Topological Interference Alignment in Wireless Networks

Babak Hassibi

joint work with Kishore Jaganathan and Christos Thramboulidis

California Institute of Technology

Smart Antennas Workshop (Paulraj's 70'th Celebration) Stanford, August 1, 2014

Outline

- Interference Alignment
- degrees-of-freedom
- channel state issues, ergodic interference alignment

Outline

- Interference Alignment
- degrees-of-freedom
- channel state issues, ergodic interference alignment
- Topological Interference Alignment
- low-rank matrix factorization
- index coding, network coding

Outline

- Interference Alignment
- degrees-of-freedom
- channel state issues, ergodic interference alignment
- Topological Interference Alignment
- low-rank matrix factorization
- index coding, network coding
- Practical considerations
- finite SNR
- efficient algortihms

Outline

- Interference Alignment
- degrees-of-freedom
- channel state issues, ergodic interference alignment
- Topological Interference Alignment
- low-rank matrix factorization
- index coding, network coding
- Practical considerations
- finite SNR
- efficient algortihms
- Simulation results
- cellular networks: comparison to frequency re-use
- ad hoc networks: comparison to graph coloring

Outline

- Interference Alignment
- degrees-of-freedom
- channel state issues, ergodic interference alignment
- Topological Interference Alignment
- low-rank matrix factorization
- index coding, network coding
- Practical considerations
- finite SNR
- efficient algortihms
- Simulation results
- cellular networks: comparison to frequency re-use
- ad hoc networks: comparison to graph coloring
- Conclusion

Wireless Networks

As we all know, wireless communication systems are characterized by
(1) broadcast during transmission
(2) interference during reception
(3) random fading
(9) path-loss
(5) mobility and time-varying channel conditions
(0) time-varying traffic patterns

Wireless Networks

As we all know, wireless communication systems are characterized by
(1) broadcast during transmission
(2) interference during reception
(3) random fading
(1) path-loss
(3) mobility and time-varying channel conditions
(0) time-varying traffic patterns

All have been successfully expolited in practical systems (perhaps) with the exception of interference.

Interference Channels

- $y_{i}=h_{i i} x_{i}+\sum_{j \neq i} h_{i j} x_{j}+z_{j}, i=1 \ldots, n$
- capacity is, by and large, unknown

Interference Channels

- $y_{i}=h_{i i} x_{i}+\sum_{j \neq i} h_{i j} x_{j}+z_{j}, i=1 \ldots, n$
- capacity is, by and large, unknown

Focus, instead, on degrees-of-freedom:

$$
\text { DoF }=\lim _{S N R \rightarrow \infty} \frac{C_{\text {sum }}(S N R)}{\log S N R} .
$$

Interference Channels

$$
\text { DoF }=\lim _{S N R \rightarrow \infty} \frac{C_{\text {Sum }(S N R)}}{\log S N R}
$$

Interference Channels

- Pros:
- considerably simplifies the analysis
- can lead to physical insight

Interference Channels

- Pros:
- considerably simplifies the analysis
- can lead to physical insight
- Cons:
- may not "well reflect" actual performance at practical SNRs

Interference Alignment (Cadambe and Jafar, 2008)

Interference Alignment (Cadambe and Jafar, 2008)

- Assume the channel coefficients change over time:

$$
y_{i}(t)=h_{i i}(t) x_{i}(t)+\sum_{j \neq i} h_{i j}(t) x_{j}(t)+z_{j}(t)
$$

Interference Alignment (Cadambe and Jafar, 2008)

- Assume the channel coefficients change over time:

$$
y_{i}(t)=h_{i i}(t) x_{i}(t)+\sum_{j \neq i} h_{i j}(t) x_{j}(t)+z_{j}(t)
$$

- Consider T channel uses:

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{c}
y_{i}(1) \\
\vdots \\
y_{i}(T)
\end{array}\right]}_{Y_{i}}=\underbrace{\left[\begin{array}{ccc}
h_{i i}(1) & & \\
& \ddots & \\
& & h_{i i}(T)
\end{array}\right]}_{H_{i i}} \underbrace{\left[\begin{array}{c}
x_{i}(1) \\
\vdots \\
x_{i}(T)
\end{array}\right]}_{X_{i}}+ \\
& \sum_{j \neq i}^{\left[\begin{array}{ccc}
h_{i j}(1) & & \\
& \ddots & \\
& & h_{i j}(T)
\end{array}\right]} \underbrace{\left[\begin{array}{c}
x_{j}(1) \\
\vdots \\
x_{j}(T)
\end{array}\right]}_{H_{i j}}+\underbrace{\left[\begin{array}{c}
z_{i}(1) \\
\vdots \\
z_{i}(T)
\end{array}\right]}_{Z_{i}}
\end{aligned}
$$

Interference Alignment (Cadambe and Jafar, 2008)

$$
Y_{i}=H_{i i} X_{i}+\sum_{j \neq i} H_{i j} X_{j}+Z_{i}
$$

Interference Alignment (Cadambe and Jafar, 2008)

$$
Y_{i}=H_{i i} X_{i}+\sum_{j \neq i} H_{i j} X_{j}+Z_{i}
$$

Let us assume each transmitter j sends m information symbols S_{j} across the T channel uses:

$$
x_{j}=V_{j} S_{j},
$$

where $V_{j} \in \mathcal{C}^{T \times m}$ represents the precoding matrix.

Interference Alignment (Cadambe and Jafar, 2008)

$$
Y_{i}=H_{i i} X_{i}+\sum_{j \neq i} H_{i j} X_{j}+Z_{i}
$$

Let us assume each transmitter j sends m information symbols S_{j} across the T channel uses:

$$
X_{j}=V_{j} S_{j},
$$

where $V_{j} \in \mathcal{C}^{T \times m}$ represents the precoding matrix. Note that the i-th interference term $\sum_{j \neq i} H_{i j} V_{j} S_{j}$ lives in the range space of the matrix

$$
\left[\begin{array}{llllll}
H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}
\end{array}\right]_{T \times(n-1) m} .
$$

Interference Alignment (Cadambe and Jafar, 2008)

If we can find precoding matrices $V_{i} \in \mathcal{C}^{T \times m}$ and decoding matrices $U_{i} \in \mathcal{C}^{m \times T}$ such that
(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$ for all $i=1, \ldots, n$, then each user can send m symbols interference free across T channel uses! (Thus, DoF $=m$.)

Interference Alignment (Cadambe and Jafar, 2008)

If we can find precoding matrices $V_{i} \in \mathcal{C}^{T \times m}$ and decoding matrices $U_{i} \in \mathcal{C}^{m \times T}$ such that
(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$ for all $i=1, \ldots, n$, then each user can send m symbols interference free across T channel uses! (Thus, DoF $=m$.)

In other words, the interference has aligned onto a $T-m$ dimensional subspace at each receiver.

Interference Alignment (Cadambe and Jafar, 2008)

If we can find precoding matrices $V_{i} \in \mathcal{C}^{T \times m}$ and decoding matrices $U_{i} \in \mathcal{C}^{m \times T}$ such that
(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$
for all $i=1, \ldots, n$, then each user can send m symbols interference free across T channel uses! (Thus, DoF $=m$.)

In other words, the interference has aligned onto a $T-m$ dimensional subspace at each receiver.

When $T=n, m=1$ is trivially achieved by time sharing. ($D \circ F=1$.)

Interference Alignment (Cadambe and Jafar, 2008)

(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$

But can we do better than $m=1$?

Interference Alignment (Cadambe and Jafar, 2008)

(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$

But can we do better than $m=1$?
As an optimization problem

Interference Alignment (Cadambe and Jafar, 2008)

(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$

But can we do better than $m=1$?

Interference Alignment (Cadambe and Jafar, 2008)

(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$

But can we do better than $m=1$?

According to Cadambe and Jafar, if the diagonal $H_{i j}$ are time-varying and generic, then as $T \rightarrow \infty, m=\frac{T}{2}$ is almost surely asymptotically achievable.

Interference Alignment (Cadambe and Jafar, 2008)

(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$

But can we do better than $m=1$?

According to Cadambe and Jafar, if the diagonal $H_{i j}$ are time-varying and generic, then as $T \rightarrow \infty, m=\frac{T}{2}$ is almost surely asymptotically achievable.

This means $D o F=\frac{n}{2}$ (i.e., everyone gets half the cake).

Interference Alignment (Cadambe and Jafar, 2008)

(1) $\operatorname{rank}\left(U_{i} H_{i i} V_{i}\right)=m$
(2) $U_{i}\left[\begin{array}{llllll}H_{i 1} V_{1} & \ldots & H_{i, i-1} V_{i-1} & H_{i, i+1} V_{i+1} & \ldots & H_{i n} V_{n}\end{array}\right]=0$

But can we do better than $m=1$?

According to Cadambe and Jafar, if the diagonal $H_{i j}$ are time-varying and generic, then as $T \rightarrow \infty, m=\frac{T}{2}$ is almost surely asymptotically achievable.

This means $D o F=\frac{n}{2}$ (i.e., everyone gets half the cake).
Cadambe and Jafar's argument relies heavily on the fact that the $H_{i j}$ are diagonal. They give explicit constructions for the precoding matrices when $T=O\left(n^{N}\right)$.

Remarks

This is a remarkable result.

Remarks

This is a remarkable result.

- requires very long block lengths

Remarks

This is a remarkable result.

- requires very long block lengths
- requires the channels to vary generically over time

Remarks

This is a remarkable result.

- requires very long block lengths
- requires the channels to vary generically over time
- requires full knowledge of the channel coefficients of every link in the network, at each transmitter and for all current and future times!
- the V_{i} depend on all the $H_{j k}$

Remarks

This is a remarkable result.

- requires very long block lengths
- requires the channels to vary generically over time
- requires full knowledge of the channel coefficients of every link in the network, at each transmitter and for all current and future times!
- the V_{i} depend on all the $H_{j k}$

This is clearly not practically feasible.

Remarks

This is a remarkable result.

- requires very long block lengths
- requires the channels to vary generically over time
- requires full knowledge of the channel coefficients of every link in the network, at each transmitter and for all current and future times!
- the V_{i} depend on all the $H_{j k}$

This is clearly not practically feasible. (But it does suggest what to shoot for in practical systems.)

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.
(2) at some future time t, we will encounter channel coefficients such that $H_{k l}(t)=-H_{k l}(1)$, for all $k \neq I$.

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.
(2) at some future time t, we will encounter channel coefficients such that $H_{k l}(t)=-H_{k l}(1)$, for all $k \neq l$.
(3) at such a time t, each transmitter i transmits the signal $x_{i}(t)=x_{i}(1)$.

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.
(2) at some future time t, we will encounter channel coefficients such that $H_{k l}(t)=-H_{k l}(1)$, for all $k \neq I$.
(3) at such a time t, each transmitter i transmits the signal $x_{i}(t)=x_{i}(1)$.
(9) each receiver i adds its received signals $y_{i}(1)$ and $y_{i}(t)$ and thereby perfectly eliminates the interference.

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.
(2) at some future time t, we will encounter channel coefficients such that $H_{k l}(t)=-H_{k l}(1)$, for all $k \neq I$.
(3) at such a time t, each transmitter i transmits the signal $x_{i}(t)=x_{i}(1)$.
(9) each receiver i adds its received signals $y_{i}(1)$ and $y_{i}(t)$ and thereby perfectly eliminates the interference.
(6) thus each symbol is transmitted interference-free over two channel uses and $D o F=\frac{n}{2}$ is achieved!

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.
(2) at some future time t, we will encounter channel coefficients such that $H_{k l}(t)=-H_{k l}(1)$, for all $k \neq I$.
(3) at such a time t, each transmitter i transmits the signal $x_{i}(t)=x_{i}(1)$.
(9) each receiver i adds its received signals $y_{i}(1)$ and $y_{i}(t)$ and thereby perfectly eliminates the interference.
(6) thus each symbol is transmitted interference-free over two channel uses and $D o F=\frac{n}{2}$ is achieved!

This is not practical, either. (To put it mildly....)

Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the $H_{i j}$ vary in an ergodic fashion and that their distributions are symmetric, one can achieve $D o F=\frac{n}{2}$ without non-causal CSIT:
(1) at time $t=1$ each transmitter i knows all the current channel coefficients $H_{k l}(1)$ and transmits the signal $x_{i}(1)$.
(2) at some future time t, we will encounter channel coefficients such that $H_{k l}(t)=-H_{k l}(1)$, for all $k \neq l$.
(3) at such a time t, each transmitter i transmits the signal $x_{i}(t)=x_{i}(1)$.
(9) each receiver i adds its received signals $y_{i}(1)$ and $y_{i}(t)$ and thereby perfectly eliminates the interference.
(6) thus each symbol is transmitted interference-free over two channel uses and $D o F=\frac{n}{2}$ is achieved!

This is not practical, either. (To put it mildly....)
Nonetheless, there is a growing literature on attempting to do interference。 alignment with more reasonable CSIT assumptions. (The jury is still out on what the gains are.)

Topological Interference Management (Jafar, 2013)

Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT

Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
- Knowledge of only the interference pattern at the transmitters

Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
- Knowledge of only the interference pattern at the transmitters
- Tight connection to the index coding problem [Birk \& Kol'98]

Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
- Knowledge of only the interference pattern at the transmitters
- Tight connection to the index coding problem [Birk \& Kol'98]

Example:

(a) Interference pattern

$$
\left[\begin{array}{ccccc}
1 & \times & 0 & 0 & \times \\
\times & 1 & 0 & 0 & \times \\
0 & \times & 1 & \times & 0 \\
0 & \times & \times & 1 & 0 \\
\times & 0 & \times & \times & 1
\end{array}\right]
$$

(b) Matrix entry pattern

Interference Avoidance (Graph Coloring)

Interference Avoidance (Graph Coloring)

Note that the following sets of nodes can transmit interference-free:

$$
\{1,2\},\{3,4\},\{5\} .
$$

Interference Avoidance (Graph Coloring)

Note that the following sets of nodes can transmit interference-free:

$$
\{1,2\},\{3,4\},\{5\} .
$$

For example, $\{1,2\}$ can transmit in the first time slot, $\{3,4\}$ in the second, and $\{5\}$ in the third. Thus, $D o F=\frac{1}{3}$.

Interference Avoidance (Graph Coloring)

Note that the following sets of nodes can transmit interference-free:

$$
\{1,2\},\{3,4\},\{5\} .
$$

For example, $\{1,2\}$ can transmit in the first time slot, $\{3,4\}$ in the second, and $\{5\}$ in the third. Thus, $D o F=\frac{1}{3}$. Note that

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Topological Interference Alignment

Topological Interference Alignment

Let each transmitter transmit one signal over two channel uses each:
$X_{1}=\left[\begin{array}{c}s_{1} \\ 0\end{array}\right], X_{2}=\left[\begin{array}{c}0 \\ s_{2}\end{array}\right], X_{3}=\left[\begin{array}{c}-s_{3} \\ s_{3}\end{array}\right], X_{4}=\left[\begin{array}{c}-s_{4} \\ s_{4}\end{array}\right], X_{5}=\left[\begin{array}{c}s_{5} \\ 0\end{array}\right]$

Topological Interference Alignment

Let each transmitter transmit one signal over two channel uses each:
$X_{1}=\left[\begin{array}{c}s_{1} \\ 0\end{array}\right], X_{2}=\left[\begin{array}{c}0 \\ s_{2}\end{array}\right], X_{3}=\left[\begin{array}{c}-s_{3} \\ s_{3}\end{array}\right], X_{4}=\left[\begin{array}{c}-s_{4} \\ s_{4}\end{array}\right], X_{5}=\left[\begin{array}{c}s_{5} \\ 0\end{array}\right]$
Y_{1}, Y_{3} and Y_{5} therefore are

$$
\begin{aligned}
& Y_{1}=\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{11}+\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{13}+\left[\begin{array}{c}
-s_{4} \\
s_{4}
\end{array}\right] h_{14}+Z_{1} \\
& Y_{3}=\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{33}+\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{31}+\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{35}+Z_{3} \\
& Y_{5}=\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{55}+\left[\begin{array}{c}
0 \\
s_{2}
\end{array}\right] h_{52}+Z_{5}
\end{aligned}
$$

Topological Interference Alignment

$$
\begin{aligned}
& Y_{1}=\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{11}+\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{13}+\left[\begin{array}{c}
-s_{4} \\
s_{4}
\end{array}\right] h_{14}+Z_{1} \\
& Y_{3}=\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{33}+\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{31}+\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{35}+Z_{3} \\
& Y_{5}=\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{55}+\left[\begin{array}{c}
0 \\
s_{2}
\end{array}\right] h_{52}+Z_{5}
\end{aligned}
$$

Topological Interference Alignment

$$
\begin{aligned}
& Y_{1}=\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{11}+\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{13}+\left[\begin{array}{c}
-s_{4} \\
s_{4}
\end{array}\right] h_{14}+Z_{1} \\
& Y_{3}=\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{33}+\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{31}+\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{35}+Z_{3} \\
& Y_{5}=\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{55}+\left[\begin{array}{c}
0 \\
s_{2}
\end{array}\right] h_{52}+Z_{5}
\end{aligned}
$$

Note that $\left[\begin{array}{ll}1 & 1\end{array}\right] Y_{1},\left[\begin{array}{ll}0 & 1\end{array}\right] Y_{3}$ and $\left[\begin{array}{ll}1 & 0\end{array}\right] Y_{5}$ are interference-free. (Similarly, for Y_{2} and Y_{4}).

Topological Interference Alignment

$$
\begin{aligned}
& Y_{1}=\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{11}+\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{13}+\left[\begin{array}{c}
-s_{4} \\
s_{4}
\end{array}\right] h_{14}+Z_{1} \\
& Y_{3}=\left[\begin{array}{c}
-s_{3} \\
s_{3}
\end{array}\right] h_{33}+\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] h_{31}+\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{35}+Z_{3} \\
& Y_{5}=\left[\begin{array}{c}
s_{5} \\
0
\end{array}\right] h_{55}+\left[\begin{array}{c}
0 \\
s_{2}
\end{array}\right] h_{52}+Z_{5}
\end{aligned}
$$

Note that $\left[\begin{array}{ll}1 & 1\end{array}\right] Y_{1},\left[\begin{array}{ll}0 & 1\end{array}\right] Y_{3}$ and $\left[\begin{array}{ll}1 & 0\end{array}\right] Y_{5}$ are interference-free. (Similarly, for Y_{2} and Y_{4}). Thus, $D o F=\frac{1}{2}$.

Topological Interference Alignment

Topological Interference Alignment

Note that

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & -1 & -1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & -1 & -1 & 1
\end{array}\right]
$$

Key Concept

S : set of all pairs (i, j) such that receiver i has interference from transmitter j

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in S \& i \neq j \\ \times & \text { otherwise }\end{cases}
$$

Key Concept

S : set of all pairs (i, j) such that receiver i has interference from transmitter j

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in S \& i \neq j \\ \times & \text { otherwise }\end{cases}
$$

Suppose we have a rank r completion $A=U V$

Key Concept

S : set of all pairs (i, j) such that receiver i has interference from transmitter j

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in S \& i \neq j \\ \times & \text { otherwise }\end{cases}
$$

Suppose we have a rank r completion $A=U V$
Over r time slots:

- transmitter i transmits $\mathbf{v}_{i} s_{i}$, where \mathbf{v}_{i} is the i-th column of V

Key Concept

S : set of all pairs (i, j) such that receiver i has interference from transmitter j

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in S \& i \neq j \\ \times & \text { otherwise }\end{cases}
$$

Suppose we have a rank r completion $A=U V$
Over r time slots:

- transmitter i transmits $\mathbf{v}_{i} s_{i}$, where \mathbf{v}_{i} is the i-th column of V receiver i receives $\mathbf{v}_{i} h_{i i} s_{i}+\sum_{j,(i, j) \in S} \mathbf{v}_{j} h_{i j} s_{j}+z_{i}$

Key Concept

S : set of all pairs (i, j) such that receiver i has interference from transmitter j

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in S \& i \neq j \\ \times & \text { otherwise }\end{cases}
$$

Suppose we have a rank r completion $A=U V$
Over r time slots:

- transmitter i transmits $\mathbf{v}_{i} s_{i}$, where \mathbf{v}_{i} is the i-th column of V receiver i receives $\mathbf{v}_{i} h_{i i} s_{i}+\sum_{j,(i, j) \in S} \mathbf{v}_{j} h_{i j} s_{j}+z_{i}$
- receiver decodes s_{i} by: $\mathbf{u}_{i}\left(\mathbf{v}_{i} h_{i i} s_{i}+\sum_{j,(i, j) \in S} \mathbf{v}_{j} h_{i j} s_{j}+z_{i}\right)$

Key Concept

S : set of all pairs (i, j) such that receiver i has interference from transmitter j

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if }(i, j) \in S \& i \neq j \\ \times & \text { otherwise }\end{cases}
$$

Suppose we have a rank r completion $A=U V$
Over r time slots:

- transmitter i transmits $\mathbf{v}_{i} s_{i}$, where \mathbf{v}_{i} is the i-th column of V receiver i receives $\mathbf{v}_{i} h_{i i} s_{i}+\sum_{j,(i, j) \in S} \mathbf{v}_{j} h_{i j} s_{j}+z_{i}$
- receiver decodes s_{i} by: $\mathbf{u}_{i}\left(\mathbf{v}_{i} h_{i i} s_{i}+\sum_{j,(i, j) \in S} \mathbf{v}_{j} h_{i j} s_{j}+z_{i}\right)=$ $\mathbf{u}_{i} \mathbf{v}_{i} h_{i i} s_{i}+\sum_{j,(i, j) \in S}\left(\mathbf{u}_{i} \boldsymbol{v}_{j}\right) h_{i j} s_{j}+\mathbf{u}_{i} z_{i}=\mathbf{u}_{i} \mathbf{v}_{i} h_{i i} s_{i}+\mathbf{u}_{i} z_{i}$, where \mathbf{u}_{i} is the i-th row of U

Connection to Low Rank Matrix Completion

$$
D o F=\frac{1}{r}
$$

Connection to Low Rank Matrix Completion

$$
D o F=\frac{1}{r}
$$

Challenges:

Connection to Low Rank Matrix Completion

$$
D o F=\frac{1}{r}
$$

Challenges:

- What is the minimum possible r for a given interference pattern?

Connection to Low Rank Matrix Completion

$$
D \circ F=\frac{1}{r}
$$

Challenges:

- What is the minimum possible r for a given interference pattern?
- For a given r, how to find such matrices (if they exist)?

Connection to Low Rank Matrix Completion

$$
D \circ F=\frac{1}{r}
$$

Challenges:

- What is the minimum possible r for a given interference pattern?
- For a given r, how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:

Connection to Low Rank Matrix Completion

$$
D o F=\frac{1}{r}
$$

Challenges:

- What is the minimum possible r for a given interference pattern?
- For a given r, how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:

$\operatorname{minimize}$	$\operatorname{rank}(A)$
subject to	$A_{S}=I$

Connection to Low Rank Matrix Completion

$$
D o F=\frac{1}{r}
$$

Challenges:

- What is the minimum possible r for a given interference pattern?
- For a given r, how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:

$\operatorname{minimize}$	$\operatorname{rank}(A)$
subject to	$A_{S}=I$

Literature:

- Lots of attention in compressed-sensing and machine learning communities [Fazel, Recht, Parrilo, Candes, Montanari, Sanghavi, Oymak-Hassibi, etc.]

Nuclear Norm Minimization

- The non-convex optimization problem

$\operatorname{minimize}$	$\operatorname{rank}(A)$
subject to	$A_{S}=I$

is often relaxed to the convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

where $\|A\|_{*}$ is the sum of the singular values of A.

Nuclear Norm Minimization

- The non-convex optimization problem

minimize	$\operatorname{rank}(A)$
subject to	$A_{S}=I$

is often relaxed to the convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

where $\|A\|_{*}$ is the sum of the singular values of A.

- Various conditions have been developed under which the solution of the relaxed problem coincides with the original one.

Nuclear Norm Minimization

- The non-convex optimization problem

minimize	$\operatorname{rank}(A)$
subject to	$A_{S}=I$

is often relaxed to the convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

where $\|A\|_{*}$ is the sum of the singular values of A.

- Various conditions have been developed under which the solution of the relaxed problem coincides with the original one.
- Do these hold here?

Nuclear Norm Minimization

- The non-convex optimization problem

minimize	$\operatorname{rank}(A)$
subject to	$A_{S}=I$

is often relaxed to the convex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

where $\|A\|_{*}$ is the sum of the singular values of A.

- Various conditions have been developed under which the solution of the relaxed problem coincides with the original one.
- Do these hold here?

They Don't

They Don't

- The problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

will always return the solution $A=I$, which is full rank.

They Don't

- The problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

will always return the solution $A=I$, which is full rank.

- The reason is simply that $|\operatorname{trace}(A)| \leq\|A\|_{*}$:

They Don't

- The problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A\|_{*} \\
\text { subject to } & A_{S}=I
\end{array}
$$

will always return the solution $A=I$, which is full rank.

- The reason is simply that $|\operatorname{trace}(A)| \leq\|A\|_{*}$:

$$
\begin{aligned}
|\operatorname{trace}(A)| & =\left|\operatorname{trace}\left(\sum_{i} u_{i} \sigma_{i} v_{i}^{*}\right)\right| \\
& =\left|\sum_{i} \operatorname{trace}\left(u_{i} \sigma_{i} v_{i}^{*}\right)\right| \\
& =\left|\sum_{i} \sigma_{i} v_{i}^{*} u_{i}\right| \leq \sum_{i} \sigma_{i}\left|v_{i}^{*} u_{i}\right| \leq \sum_{i} \sigma_{i}=\|A\|_{*}
\end{aligned}
$$

Alternative to Nuclear Norm Minimization

Alternative to Nuclear Norm Minimization

Instead of searching for the optimal r, seek a completion for a fixed r : Matrix Completion Problem:

$$
\begin{array}{ll}
\text { find } & A \\
\text { subject to } & A_{S}=I \\
& \operatorname{rank}(A)=r
\end{array}
$$

Alternative to Nuclear Norm Minimization

Instead of searching for the optimal r, seek a completion for a fixed r :
Matrix Completion Problem:

$$
\begin{array}{ll}
\text { find } & A \\
\text { subject to } & A_{S}=I \\
& \operatorname{rank}(A)=r
\end{array}
$$

The matrix A should lie in the sets:
(S1) Rank r matrices
(S2) Matrices with the entry pattern [.] $]_{S}=I$

Alternative to Nuclear Norm Minimization

Instead of searching for the optimal r, seek a completion for a fixed r :
Matrix Completion Problem:

$$
\begin{array}{ll}
\text { find } & A \\
\text { subject to } & A_{S}=I \\
& \operatorname{rank}(A)=r
\end{array}
$$

The matrix A should lie in the sets:
(S1) Rank r matrices
(S2) Matrices with the entry pattern [.] $]_{S}=I$
Observation: It is very easy to project any given matrix onto the sets (S) and (S2) individually

Alternating Projection Method

Algorithm 1 Proposed Algorithm: Alternating Projection Method
Let A^{0} be a random matrix. From $i=0$ until convergence:

- Project A^{i} onto (S1): $B^{i}=\operatorname{svd}\left(A^{i}, r\right)$
- Project B^{i} onto (S2): $A^{i+1}=\left[B^{i}\right]_{S^{c}}+I$

Descent method:

- B^{i+1} is the best rank r approximation of $\left[B^{i}\right]_{S^{c}}+1$

$$
\begin{aligned}
& \left\|B^{i+1}-\left(\left[B^{i}\right]_{S^{c}}+I\right)\right\|_{F}^{2} \leq\left\|B^{i}-\left(\left[B^{i}\right]_{S^{c}}+I\right)\right\|_{F}^{2} \\
& \Rightarrow\left\|B_{S^{c}}^{i+1}-B_{S^{c}}^{i}\right\|_{F}^{2}+\left\|B_{S}^{i+1}-I\right\|_{F}^{2} \leq\left\|B_{S}^{i}-I\right\|_{F}^{2}
\end{aligned}
$$

Convergence to fixed points:

$$
B=\operatorname{svd}\left(B_{S^{c}}+I, r\right)
$$

Alternating Minimization

Algorithm 2 AltMin

Inputs: n, r, S, P_{t}. Initialization: $U_{0} \in \mathcal{R}^{n \times r}$ random.
From $i=0$ until convergence,

- Solve for V_{i} :
minimize

$$
\left\|\left(U_{i-1} V_{i}^{\top}-I\right)_{s}\right\|
$$

- Solve for U_{i} :
minimize

$$
\left\|\left(U_{i} V_{i}^{T}-I\right)_{S}\right\|
$$

If algorithm converges to V_{N} and U_{N}, output V_{N} and U_{N}.
S includes the set of indices where $A_{i j}=0$ and the diagonal.

Numerical Experiments

$$
\begin{aligned}
M= & {\left[\begin{array}{ccccc}
1 & -2.09 & 0 & 0 & 0.81 \\
-0.47 & 1 & 0 & 0 & -0.39 \\
0 & 1.73 & 1 & 0.69 & 0 \\
0 & 2.52 & 1.45 & 1 & 0 \\
1.23 & 0 & 1.49 & 1.03 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
0.93 & 0.89 \\
-0.44 & -0.42 \\
-1.00 & 0.17 \\
-1.46 & 0.25 \\
-0.35 & 1.35
\end{array}\right]\left[\begin{array}{cc}
0.26 & 0.96 \\
-1.80 & -0.47 \\
-0.84 & 0.89 \\
-0.58 & 0.61 \\
0.13 & 0.77
\end{array}\right] }
\end{aligned}
$$

Numerical Experiments

$$
\begin{aligned}
M= & {\left[\begin{array}{ccccc}
1 & -2.09 & 0 & 0 & 0.81 \\
-0.47 & 1 & 0 & 0 & -0.39 \\
0 & 1.73 & 1 & 0.69 & 0 \\
0 & 2.52 & 1.45 & 1 & 0 \\
1.23 & 0 & 1.49 & 1.03 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
0.93 & 0.89 \\
-0.44 & -0.42 \\
-1.00 & 0.17 \\
-1.46 & 0.25 \\
-0.35 & 1.35
\end{array}\right]\left[\begin{array}{cc}
0.26 & 0.96 \\
-1.80 & -0.47 \\
-0.84 & 0.89 \\
-0.58 & 0.61 \\
0.13 & 0.77
\end{array}\right] }
\end{aligned}
$$

- Alternating Projection method recovers the optimal rank for all the index coding examples in [Birk \& Kol'98] and all the TIM problems in [Jafar'13]

Numerical Experiments

$$
\begin{aligned}
& M=\left[\begin{array}{ccccc}
1 & -2.09 & 0 & 0 & 0.81 \\
-0.47 & 1 & 0 & 0 & -0.39 \\
0 & 1.73 & 1 & 0.69 & 0 \\
0 & 2.52 & 1.45 & 1 & 0 \\
1.23 & 0 & 1.49 & 1.03 & 1
\end{array}\right]= \\
& {\left[\begin{array}{cc}
0.93 & 0.89 \\
-0.44 & -0.42 \\
-1.00 & 0.17 \\
-1.46 & 0.25 \\
-0.35 & 1.35
\end{array}\right]\left[\begin{array}{cc}
0.26 & 0.96 \\
-1.80 & -0.47 \\
-0.84 & 0.89 \\
-0.58 & 0.61 \\
0.13 & 0.77
\end{array}\right]^{T}}
\end{aligned}
$$

- Alternating Projection method recovers the optimal rank for all the index coding examples in [Birk \& Kol'98] and all the TIM problems in [Jafar'13]
- However, we know from extensive simulations (on much larger problems) that the method does not always yield the optimal rank

Numerical Experiments

$$
\begin{aligned}
M= & {\left[\begin{array}{ccccc}
1 & -2.09 & 0 & 0 & 0.81 \\
-0.47 & 1 & 0 & 0 & -0.39 \\
0 & 1.73 & 1 & 0.69 & 0 \\
0 & 2.52 & 1.45 & 1 & 0 \\
1.23 & 0 & 1.49 & 1.03 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
0.93 & 0.89 \\
-0.44 & -0.42 \\
-1.00 & 0.17 \\
-1.46 & 0.25 \\
-0.35 & 1.35
\end{array}\right]\left[\begin{array}{cc}
0.26 & 0.96 \\
-1.80 & -0.47 \\
-0.84 & 0.89 \\
-0.58 & 0.61 \\
0.13 & 0.77
\end{array}\right] }
\end{aligned}
$$

- Alternating Projection method recovers the optimal rank for all the index coding examples in [Birk \& Kol'98] and all the TIM problems in [Jafar'13]
- However, we know from extensive simulations (on much larger problems) that the method does not always yield the optimal rank convergence analysis is still on-going

Digression: Low Rank Matrix Completion over Finite Fields

Digression: Low Rank Matrix Completion over Finite Fields

The problems of
(1) network coding
(2) index coding
(3) distributed storage
(4) secret sharing
for linear codes, can all be recast as the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{rank}(A) \\
\text { subject to } & A_{S}=Y
\end{array}
$$

where the elements of A and Y belong to some finite field \mathcal{F}_{q}.

Digression: Low Rank Matrix Completion over Finite Fields

The problems of
(1) network coding
(2) index coding
(3) distributed storage
(4) secret sharing
for linear codes, can all be recast as the problem

minimize	$\operatorname{rank}(A)$
subject to	$A_{S}=Y$

where the elements of A and Y belong to some finite field \mathcal{F}_{q}.

- While there is a huge literature on matrix completion over the real and complex fields, there is virtually no literature for finite fields.

Digression: Low Rank Matrix Completion over Finite Fields

The problems of
(1) network coding
(2) index coding
(3) distributed storage
(9) secret sharing
for linear codes, can all be recast as the problem

minimize	$\operatorname{rank}(A)$
subject to	$A_{S}=Y$

where the elements of A and Y belong to some finite field \mathcal{F}_{q}.

- While there is a huge literature on matrix completion over the real and complex fields, there is virtually no literature for finite fields.
- Can one leverage the former results for the latter? (Compressed sensing and LP decoding.)

Towards Practical Wireless Interference Networks

Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT

Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT

Challenges:

- How do DoF results translate to practical SNR?

Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT

Challenges:

- How do DoF results translate to practical SNR?
- How is the capacity affected when you consider geometrically-placed transmitters and receivers, path-loss models, fading and put back in the real channel coefficients?

Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT

Challenges:

- How do DoF results translate to practical SNR?
- How is the capacity affected when you consider geometrically-placed transmitters and receivers, path-loss models, fading and put back in the real channel coefficients?
- How does TIM compare to the baseline, i.e., interference avoidance (frequency reuse, etc)?

Hexagonal Grid: Setup

- $N=8,18,24,32,50$ cells.
- 6 users per cell,
- average SNR in each cell $=20 \mathrm{db}$
- average INR from neighboring cell $=12 d b$
- path loss model:

$$
h_{i j} \sim \mathcal{N}\left(0,\left(\frac{d_{i j}}{r_{0}}\right)^{-4.0}\right)
$$

Methods
(1) frequency reuse 3 yields $D o F=\frac{1}{18}$
(2) with carefully-placed users, and no fading, Jafar exhibits an optimal DoF $=\frac{1}{7}$ (257\% improvement)
(3) we will randomly place 6 users in each cell and will consider fading

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin
$D o F$	$1 / 18$	$1 / 11$	$1 / 9$

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin
$D o F$	$1 / 18$	$1 / 11$	$1 / 9$

- Sum Rate

	FreqReuse	Coloring	AltMin
$N=8$	13.5302	14.7916	6.2415
$N=18$	23.3473	23.1307	13.0369
$N=24$	29.0311	29.2044	14.9266
$N=32$	41.2803	39.0702	22.3766
$N=50$	60.4578	62.7105	35.1663

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin
$D o F$	$1 / 18$	$1 / 11$	$1 / 9$

- Sum Rate

	FreqReuse	Coloring	AltMin
$N=8$	13.5302	14.7916	6.2415
$N=18$	23.3473	23.1307	13.0369
$N=24$	29.0311	29.2044	14.9266
$N=32$	41.2803	39.0702	22.3766
$N=50$	60.4578	62.7105	35.1663

This is really bad. What is going on?

Let us Look at the Sum Rate

Let us Look at the Sum Rate

- Transmitter i has signal $s_{i}, E\left|s_{i}\right|^{2}=1$ and transmits $x_{i}=v_{i} s_{i} \in \mathcal{R}^{r}$.

Let us Look at the Sum Rate

- Transmitter i has signal $s_{i}, E\left|s_{i}\right|^{2}=1$ and transmits $x_{i}=v_{i} s_{i} \in \mathcal{R}^{r}$. The power constraint per channel use is $\frac{E\left\|x_{i}\right\|^{2}}{r}=P_{t}$, which translates to $\left\|v_{i}\right\|^{2}=r P_{t}$.

Let us Look at the Sum Rate

- Transmitter i has signal $s_{i}, E\left|s_{i}\right|^{2}=1$ and transmits $x_{i}=v_{i} s_{i} \in \mathcal{R}^{r}$. The power constraint per channel use is $\frac{E\left\|x_{i}\right\|^{2}}{r}=P_{t}$, which translates to $\left\|v_{i}\right\|^{2}=r P_{t}$.
- At receiver i

$$
u_{i} y_{i}=u_{i} v_{i} h_{i i} s_{i}+\sum_{j: A_{i j}=0}^{n} \underbrace{u_{i} v_{j}}_{=0} h_{i j} s_{j}+\sum_{j: A_{i j}=x}^{n} u_{i} v_{j} h_{i j} s_{j}+u_{i} z_{i} .
$$

Let us Look at the Sum Rate

- Transmitter i has signal $s_{i}, E\left|s_{i}\right|^{2}=1$ and transmits $x_{i}=v_{i} s_{i} \in \mathcal{R}^{r}$. The power constraint per channel use is $\frac{E\left\|x_{i}\right\|^{2}}{r}=P_{t}$, which translates to $\left\|v_{i}\right\|^{2}=r P_{t}$.
- At receiver i

$$
u_{i} y_{i}=u_{i} v_{i} h_{i i} s_{i}+\sum_{j: A_{i j}=0}^{n} \underbrace{u_{i} v_{j}}_{=0} h_{i j} s_{j}+\sum_{j: A_{i j}=x}^{n} u_{i} v_{j} h_{i j} s_{j}+u_{i} z_{i} .
$$

- Therefore the sum rate is

$$
C_{s u m}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\left|u_{i} v_{i}\right|^{2}\left|h_{i i}\right|^{2}}{\sigma^{2}\left\|u_{i}\right\|^{2}+\sum_{j: A_{i j}=x}^{n}\left|u_{i} v_{j}\right|^{2}\left|h_{i j}\right|^{2}}\right)
$$

or

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} r P_{t}\left|h_{i i}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{j}\right\|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

The Sum Rate

The Sum Rate

- Looking at the results of the simulations for "AltMin", the value $\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}}$ was often very small.

The Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\left.\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|_{i} \| P_{i} \mid h_{t}} r h_{i j}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i j} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2} v_{j} \|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

- Looking at the results of the simulations for "AltMin", the value $\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}}$ was often very small.
- Therefore we will impose the extra constraint in the algorithm that

$$
\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} \geq c, \quad \text { for some } 0 \leq c \leq 1
$$

Constrained Alternating Minimization

Algorithm 3 AltMinCon

Inputs: n, r, S, c, P_{t}. Initialization: $U_{0} \in \mathcal{R}^{n \times r}$ random.
From $i=0$ until convergence,

- Solve for V_{i} :

$$
\begin{array}{lc}
\operatorname{minimize} & \left\|\left(U_{i-1} V_{i}\right)_{S}\right\| \\
\text { subject to } & \left\|\mathbf{v}_{j}^{(i)}\right\| \leq 1 \text { and }\left(\mathbf{u}_{j}^{(i-1)}\right)^{T} \mathbf{v}_{j}^{(i)} \geq c\left\|\mathbf{u}_{j}^{(i-1)}\right\| \quad \forall j
\end{array}
$$

- Solve for U_{i} :

$$
\begin{array}{lc}
\operatorname{minimize} & \left\|\left(U_{i} V_{i}\right)_{S}\right\| \\
\text { subject to } & \left\|\mathbf{u}_{j}^{(i)}\right\| \leq 1 \text { and }\left(\mathbf{u}_{j}^{(i)}\right)^{T} \mathbf{v}_{j}^{(i)} \geq c\left\|\mathbf{v}_{j}^{(i)}\right\| \forall j
\end{array}
$$

If algorithm converges to V_{N} and U_{N}, normalize columns of V_{N} to satisfy transmit power constraint $\left\|\mathbf{v}_{j}^{(N)}\right\| \leq \sqrt{r} P_{t}$. output V_{N} and U_{N}.
S includes only the set of indices where $A_{i j}=0$.

AltMin vs AltMinCon

Hexagonal Grid: Results

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin	AltMinCon
DoF	$1 / 18$	$1 / 11$	$1 / 9$	$1 / 11$

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin	AltMinCon
DoF	$1 / 18$	$1 / 11$	$1 / 9$	$1 / 11$

- Sum Rate

	FreqReuse	Coloring	AltMin	AltMinCon
$N=8$	13.5302	14.7916	6.2415	11.3251
$N=18$	23.3473	23.1307	13.0369	20.6579
$N=24$	29.0311	29.2044	14.9266	23.7311
$N=32$	41.2803	39.0702	22.3766	34.6017
$N=50$	60.4578	62.7105	35.1663	54.3691

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin	AltMinCon
DoF	$1 / 18$	$1 / 11$	$1 / 9$	$1 / 11$

- Sum Rate

	FreqReuse	Coloring	AltMin	AltMinCon
$N=8$	13.5302	14.7916	6.2415	11.3251
$N=18$	23.3473	23.1307	13.0369	20.6579
$N=24$	29.0311	29.2044	14.9266	23.7311
$N=32$	41.2803	39.0702	22.3766	34.6017
$N=50$	60.4578	62.7105	35.1663	54.3691

Better, but still not quite good enough. What is going on?

Back to the Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{\prime}} r P_{t}\left|h_{i j}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} \cdot\right|^{2}}{\left.\left\|u_{i}\right\|^{2} v_{j j}\right|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

Back to the Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} r P_{t}\left|h_{i i}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{j}\right\|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.

Back to the Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} r P_{t}\left|h_{i i}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{j}\right\|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing $C_{\text {sum }}$ directly is not possible, since we do not know the $h_{i j}$

Back to the Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} r P_{t}\left|h_{i i}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{j}\right\|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing $C_{\text {sum }}$ directly is not possible, since we do not know the $h_{i j}$-we only want to use topological information

Back to the Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} r P_{t}\left|h_{i i}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{j}\right\|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing $C_{\text {sum }}$ directly is not possible, since we do not know the $h_{i j}$-we only want to use topological information
- However, since we know which cell each user j is in, from the path-loss model, we have an idea of $E\left|h_{i j}\right|^{2}$

Back to the Sum Rate

$$
C_{\text {sum }}=\sum_{i=1}^{r} \frac{1}{r} \log \left(1+\frac{\frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} r P_{t}\left|h_{i i}\right|^{2}}{\sigma^{2}+\sum_{j: A_{i j}=x}^{n} \frac{\left|u_{i} v_{j}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{j}\right\|^{2}} r P_{t}\left|h_{i j}\right|^{2}}\right)
$$

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing $C_{\text {sum }}$ directly is not possible, since we do not know the $h_{i j}$-we only want to use topological information
- However, since we know which cell each user j is in, from the path-loss model, we have an idea of $E\left|h_{i j}\right|^{2}$

Proposed Algorithm

Proposed Algorithm

We therefore propose

$$
\min _{U \in \mathcal{R}^{n \times r}, V \in \mathcal{R}^{r \times n}} \sum_{(i, j) \in S, i \neq j}\left|u_{i} v_{j}\right|^{2}+\lambda \sum_{(i, j) \notin S}\left|u_{i} v_{j}\right|^{2} E\left|h_{i j}\right|^{2}
$$

where $E\left|h_{i j}\right|^{2}$ depends only on the (distance of the) cells in which receiver i and transmitter j live, subject to

$$
\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} \geq c, \quad \text { for some } 0 \leq c \leq 1
$$

Proposed Algorithm

We therefore propose

$$
\min _{U \in \mathcal{R}^{n \times r}, V \in \mathcal{R}^{r \times n}} \sum_{(i, j) \in S, i \neq j}\left|u_{i} v_{j}\right|^{2}+\lambda \sum_{(i, j) \notin S}\left|u_{i} v_{j}\right|^{2} E\left|h_{i j}\right|^{2}
$$

where $E\left|h_{i j}\right|^{2}$ depends only on the (distance of the) cells in which receiver i and transmitter j live, subject to

$$
\frac{\left|u_{i} v_{i}\right|^{2}}{\left\|u_{i}\right\|^{2}\left\|v_{i}\right\|^{2}} \geq c, \quad \text { for some } 0 \leq c \leq 1
$$

- The above can also be solved in an alternating minimization fashion.

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin	AltMinCon	RateOpt
DoF	$1 / 18$	$1 / 11$	$1 / 9$	$1 / 11$	$1 / 8$

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin	AltMinCon	RateOpt
DoF	$1 / 18$	$1 / 11$	$1 / 9$	$1 / 11$	$1 / 8$

- Sum Rate

	FreqReuse	Coloring	AltMin	AltMinCon	RateOpt
$N=8$	13.5302	14.7916	6.2415	11.3251	15.4326
$N=18$	23.3473	23.1307	13.0369	20.6579	28.1829
$N=24$	29.0311	29.2044	14.9266	23.7311	32.2458
$N=32$	41.2803	39.0702	22.3766	34.6017	47.0489
$N=50$	60.4578	62.7105	35.1663	54.3691	70.4724

Hexagonal Grid: Results

- DoF

	FreqReuse	Coloring	AltMin	AltMinCon	RateOpt
DoF	$1 / 18$	$1 / 11$	$1 / 9$	$1 / 11$	$1 / 8$

- Sum Rate

	FreqReuse	Coloring	AltMin	AltMinCon	RateOpt
$N=8$	13.5302	14.7916	6.2415	11.3251	15.4326
$N=18$	23.3473	23.1307	13.0369	20.6579	28.1829
$N=24$	29.0311	29.2044	14.9266	23.7311	32.2458
$N=32$	41.2803	39.0702	22.3766	34.6017	47.0489
$N=50$	60.4578	62.7105	35.1663	54.3691	70.4724

We get $10 \%-20 \%$ improvement in the sum rate

Ad hoc Network Example

- $N=100$ Tx-Rx pairs randomly placed in a 20×20 square
- max distance btw Tx-Rx is 1
- average SNR to desired user $=20 \mathrm{db}$
- path loss model:

$$
h_{i j} \sim \mathcal{N}\left(0,\left(\frac{d_{i j}}{r_{0}}\right)^{-4.0}\right)
$$

Algorithms
(1) greedy Coloring (Coloring)
(2) matrix Completion (AltMin)
(3) constrained matrix Completion (AltMinCon)
(9) rate optimization (RateOpt)

Ad hoc Network Results

- Average values over 25 realizations

Ad hoc Network Results

- Average values over 25 realizations

	Coloring	AltMin	AltMinCon	RateOpt
Rank	6.28	6.16	6.16	3.28
Sum Rate	56.0615	51.0674	55.9420	77.7062

Ad hoc Network Results

- Average values over 25 realizations

	Coloring	AltMin	AltMinCon	RateOpt
Rank	6.28	6.16	6.16	3.28
Sum Rate	56.0615	51.0674	55.9420	77.7062

We obtain a $\% 40$ improvement in the sum rate.

Discussion and Conclusion

Discussion and Conclusion

- Interference alignment
- unreasonable CSIT assumptions (not very practical)

Discussion and Conclusion

- Interference alignment
- unreasonable CSIT assumptions (not very practical)
- Topological interference alignmment
- requires only topological information of the network; can significantly improve the DoF
- reduces to low rank matrix completion
- related to network coding, index coding, secret sharing (when over finite fields)

Discussion and Conclusion

- Interference alignment
- unreasonable CSIT assumptions (not very practical)
- Topological interference alignmment
- requires only topological information of the network; can significantly improve the DoF
- reduces to low rank matrix completion
- related to network coding, index coding, secret sharing (when over finite fields)
- In practice DoF can be misleading
- developed alternative algorithms (moved away somewhat from TIM)
- promising preliminary results: there is something to be had

Possible Future Work

Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
(1) What are good initializations for the various Alternating Projection methods?
(2) Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
(3) Other matrix completion-based approaches

Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
(1) What are good initializations for the various Alternating Projection methods?
(2) Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
(3) Other matrix completion-based approaches
- Identify scenarios where we can have an advantage
(1) Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
(2) What are there other practical considerations to take into account?

Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
(1) What are good initializations for the various Alternating Projection methods?
(2) Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
(3) Other matrix completion-based approaches
- Identify scenarios where we can have an advantage
(1) Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
(2) What are there other practical considerations to take into account?
- How to combine this with MIMO

Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
(1) What are good initializations for the various Alternating Projection methods?
(2) Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
(3) Other matrix completion-based approaches
- Identify scenarios where we can have an advantage
(1) Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
(2) What are there other practical considerations to take into account?
- How to combine this with MIMO
- Study of the finite field problem

