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Wireless Networks

As we all know, wireless communication systems are characterized by

1 broadcast during transmission

2 interference during reception

3 random fading

4 path-loss

5 mobility and time-varying channel conditions

6 time-varying traffic patterns

All have been successfully expolited in practical systems (perhaps) with
the exception of interference.
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Interference Channels

yi = hiixi +
∑

j 6=i hijxj + zj , i = 1 . . . , n

capacity is, by and large, unknown

Focus, instead, on degrees-of-freedom:

DoF = lim
SNR→∞

Csum(SNR)

log SNR
.
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.

Pros:
I considerably simplifies the analysis
I can lead to physical insight

Cons:
I may not ”well reflect” actual performance at practical SNRs
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Interference Alignment (Cadambe and Jafar, 2008)

Assume the channel coefficients change over time:
yi (t) = hii (t)xi (t) +

∑
j 6=i hij(t)xj(t) + zj(t)

Consider T channel uses:



yi (1)
...

yi (T )




︸ ︷︷ ︸
Yi

=




hii (1)
. . .

hii (T )




︸ ︷︷ ︸
Hii




xi (1)
...

xi (T )




︸ ︷︷ ︸
Xi

+

∑

j 6=i




hij(1)
. . .

hij(T )




︸ ︷︷ ︸
Hij




xj(1)
...

xj(T )




︸ ︷︷ ︸
Xj

+




zi (1)
...

zi (T )




︸ ︷︷ ︸
Zi
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Interference Alignment (Cadambe and Jafar, 2008)

Yi = HiiXi +
∑

j 6=i

HijXj + Zi .

Let us assume each transmitter j sends m information symbols Sj across
the T channel uses:

Xj = VjSj ,

where Vj ∈ CT×m represents the precoding matrix. Note that the i-th
interference term

∑
j 6=i HijVjSj lives in the range space of the matrix

[
Hi1V1 . . . Hi ,i−1Vi−1 Hi ,i+1Vi+1 . . . HinVn

]
T×(n−1)m .
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Interference Alignment (Cadambe and Jafar, 2008)

If we can find precoding matrices Vi ∈ CT×m and decoding matrices
Ui ∈ Cm×T such that

1 rank(UiHiiVi ) = m

2 Ui

[
Hi1V1 . . . Hi ,i−1Vi−1 Hi ,i+1Vi+1 . . . HinVn

]
= 0

for all i = 1, . . . , n, then each user can send m symbols interference free
across T channel uses! (Thus, DoF = m.)

In other words, the interference has aligned onto a T −m dimensional
subspace at each receiver.

When T = n, m = 1 is trivially achieved by time sharing. (DoF = 1.)
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Interference Alignment (Cadambe and Jafar, 2008)

1 rank(UiHiiVi ) = m

2 Ui

[
Hi1V1 . . . Hi ,i−1Vi−1 Hi ,i+1Vi+1 . . . HinVn

]
= 0

But can we do better than m = 1?

As an optimization problem

max rank
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Interference Alignment (Cadambe and Jafar, 2008)

1 rank(UiHiiVi ) = m

2 Ui

[
Hi1V1 . . . Hi ,i−1Vi−1 Hi ,i+1Vi+1 . . . HinVn

]
= 0

But can we do better than m = 1?

According to Cadambe and Jafar, if the diagonal Hij are time-varying and
generic, then as T →∞, m = T

2 is almost surely asymptotically
achievable.

This means DoF = n
2 (i.e., everyone gets half the cake).

Cadambe and Jafar’s argument relies heavily on the fact that the Hij are
diagonal. They give explicit constructions for the precoding matrices when
T = O(nN).
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Remarks

This is a remarkable result.

requires very long block lengths

requires the channels to vary generically over time

requires full knowledge of the channel coefficients of every link in the
network, at each transmitter and for all current and future times!

I the Vi depend on all the Hjk

This is clearly not practically feasible. (But it does suggest what to shoot
for in practical systems.)
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Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the Hij vary in an ergodic fashion and that their distributions are
symmetric, one can achieve DoF = n

2 without non-causal CSIT:

1 at time t = 1 each transmitter i knows all the current channel
coefficients Hkl(1) and transmits the signal xi (1).

2 at some future time t, we will encounter channel coefficients such
that Hkl(t) = −Hkl(1), for all k 6= l .

3 at such a time t, each transmitter i transmits the signal xi (t) = xi (1).
4 each receiver i adds its received signals yi (1) and yi (t) and thereby

perfectly eliminates the interference.
5 thus each symbol is transmitted interference-free over two channel

uses and DoF = n
2 is achieved!

This is not practical, either. (To put it mildly....)
Nonetheless, there is a growing literature on attempting to do interference
alignment with more reasonable CSIT assumptions. (The jury is still out
on what the gains are.)
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Topological Interference Management (Jafar, 2013)

Exploit IA principles under realistic assumptions on CSIT

Knowledge of only the interference pattern at the transmitters

Tight connection to the index coding problem [Birk & Kol’98]

Example:
t1#

t2#

t3#

t4#

t5#

r1#

r2#

r3#

r4#

r5#

(a) Interference pattern

2
66664

1 ⇥ 0 0 ⇥
⇥ 1 0 0 ⇥
0 ⇥ 1 ⇥ 0
0 ⇥ ⇥ 1 0
⇥ 0 ⇥ ⇥ 1

3
77775

(b) Matrix entry pattern
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Interference Avoidance (Graph Coloring)

t1#

t2#

t3#

t4#

t5#

r1#

r2#

r3#

r4#

r5#

Note that the following sets of nodes can transmit interference-free:

{1, 2} , {3, 4} , {5}.
For example, {1, 2} can transmit in the first time slot, {3, 4} in the
second, and {5} in the third. Thus, DoF = 1

3 . Note that



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1







1 1 0 0 0
0 0 1 1 0
0 0 0 0 1


 =




1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1



.
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Topological Interference Alignment

t1#

t2#

t3#

t4#

t5#

r1#

r2#

r3#

r4#

r5#

Let each transmitter transmit one signal over two channel uses each:

X1 =

[
s1
0

]
, X2 =

[
0
s2

]
, X3 =

[
−s3
s3

]
, X4 =

[
−s4
s4

]
, X5 =

[
s5
0

]
.

Y1, Y3 and Y5 therefore are

Y1 =

[
s1
0

]
h11 +

[
−s3
s3

]
h13 +

[
−s4
s4

]
h14 + Z1

Y3 =

[
−s3
s3

]
h33 +

[
s1
0

]
h31 +

[
s5
0

]
h35 + Z3

Y5 =

[
s5
0

]
h55 +

[
0
s2

]
h52 + Z5
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Note that
[

1 1
]

Y1,
[

0 1
]

Y3 and
[

1 0
]

Y5 are interference-free.

(Similarly, for Y2 and Y4). Thus, DoF = 1
2 .
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Key Concept

S : set of all pairs (i , j) such that receiver i has interference from
transmitter j

Aij =





1 if i = j ,

0 if (i , j) ∈ S & i 6= j ,

× otherwise.

Suppose we have a rank r completion A = UV

Over r time slots:

transmitter i transmits vi si , where vi is the i-th column of V
receiver i receives vihii si +

∑
j ,(i ,j)∈S vjhijsj + zi

receiver decodes si by: ui
(
vihii si +

∑
j ,(i ,j)∈S vjhijsj + zi

)
=

uivihii si +
∑

j ,(i ,j)∈S(uivj)hijsj + uizi = uivihii si + uizi ,
where ui is the i-th row of U
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Connection to Low Rank Matrix Completion

DoF =
1

r

Challenges:

What is the minimum possible r for a given interference pattern?

For a given r , how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:

minimize rank(A)

subject to AS = I

Literature:

Lots of attention in compressed-sensing and machine learning
communities [Fazel, Recht, Parrilo, Candes, Montanari, Sanghavi,
Oymak-Hassibi, etc.]
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Nuclear Norm Minimization

The non-convex optimization problem

minimize rank(A)

subject to AS = I

is often relaxed to the convex optimization

minimize ‖A‖∗
subject to AS = I

where ‖A‖∗ is the sum of the singular values of A.

Various conditions have been developed under which the solution of
the relaxed problem coincides with the original one.

Do these hold here?
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They Don’t

The problem

minimize ‖A‖∗
subject to AS = I

will always return the solution A = I , which is full rank.

The reason is simply that |trace(A)| ≤ ‖A‖∗:

|trace(A)| =

∣∣∣∣∣trace

(∑

i

uiσiv
∗
i

)∣∣∣∣∣

=

∣∣∣∣∣
∑

i

trace (uiσiv
∗
i )

∣∣∣∣∣

=

∣∣∣∣∣
∑

i

σiv
∗
i ui

∣∣∣∣∣ ≤
∑

i

σi |v∗i ui | ≤
∑

i

σi = ‖A‖∗
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Alternative to Nuclear Norm Minimization

Instead of searching for the optimal r , seek a completion for a fixed r :

Matrix Completion Problem:

find A

subject to AS = I

rank(A) = r

The matrix A should lie in the sets:

(S1) Rank r matrices

(S2) Matrices with the entry pattern [.]S = I

Observation: It is very easy to project any given matrix onto the sets (S1)
and (S2) individually
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Alternating Projection Method

Algorithm 1 Proposed Algorithm: Alternating Projection Method

Let A0 be a random matrix. From i = 0 until convergence:

Project Ai onto (S1): B i = svd(Ai , r)

Project B i onto (S2): Ai+1 = [B i ]Sc + I

Descent method:

B i+1 is the best rank r approximation of [B i ]Sc + I

||B i+1 − ([B i ]Sc + I )||2F ≤ ||B i − ([B i ]Sc + I )||2F
⇒ ||B i+1

Sc − B i
Sc ||2F + ||B i+1

S − I ||2F ≤ ||B i
S − I ||2F

Convergence to fixed points:

B = svd(BSc + I , r)
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Alternating Minimization

Algorithm 2 AltMin

Inputs: n, r , S , Pt . Initialization: U0 ∈ Rn×r random.
From i = 0 until convergence,

Solve for Vi :

minimize ‖(Ui−1V
T
i − I )S‖

Solve for Ui :

minimize ‖(UiV
T
i − I )S‖

If algorithm converges to VN and UN ,
output VN and UN .

S includes the set of indices where Aij = 0 and the diagonal.
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Numerical Experiments
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Alternating Projection method recovers the optimal rank for all the
index coding examples in [Birk & Kol’98] and all the TIM problems in
[Jafar’13]
However, we know from extensive simulations (on much larger
problems) that the method does not always yield the optimal rank—a
convergence analysis is still on-going
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Digression: Low Rank Matrix Completion over Finite Fields

The problems of

1 network coding

2 index coding

3 distributed storage

4 secret sharing

for linear codes, can all be recast as the problem

minimize rank(A)

subject to AS = Y

where the elements of A and Y belong to some finite field Fq.

While there is a huge literature on matrix completion over the real
and complex fields, there is virtually no literature for finite fields.

Can one leverage the former results for the latter? (Compressed
sensing and LP decoding.)
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Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to
compute (or lower bound) the DoF of wireless interference networks

– provides an opportunity to apply premises of IA under realistic
assumptions on CSIT

Challenges:

How do DoF results translate to practical SNR?

How is the capacity affected when you consider geometrically-placed
transmitters and receivers, path-loss models, fading and put back in
the real channel coefficients?

How does TIM compare to the baseline, i.e., interference avoidance
(frequency reuse, etc)?
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Hexagonal Grid: Setup

N=8,18,24,32,50 cells.

6 users per cell,

average SNR in each cell
= 20db

average INR from
neighboring cell = 12db

path loss model:

hij ∼ N (0,
(
dij
r0

)−4.0
)

 

 

BS

U

Methods

1 frequency reuse 3 yields DoF = 1
18

2 with carefully-placed users, and no fading, Jafar exhibits an optimal
DoF = 1

7 (257% improvement)

3 we will randomly place 6 users in each cell and will consider fading
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Hexagonal Grid: Results

DoF

FreqReuse Coloring AltMin

DoF 1/18 1/11 1/9

Sum Rate

FreqReuse Coloring AltMin

N = 8 13.5302 14.7916 6.2415

N = 18 23.3473 23.1307 13.0369

N = 24 29.0311 29.2044 14.9266

N = 32 41.2803 39.0702 22.3766

N = 50 60.4578 62.7105 35.1663

This is really bad. What is going on?
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Let us Look at the Sum Rate

Transmitter i has signal si , E |si |2 = 1 and transmits xi = vi si ∈ Rr .

The power constraint per channel use is E‖xi‖2
r = Pt , which translates

to ‖vi‖2 = rPt .
At receiver i

uiyi = uivihii si +
n∑

j :Aij=0

uivj︸︷︷︸
=0

hijsj +
n∑

j :Aij=×
uivjhijsj + uizi .

Therefore the sum rate is

Csum =
r∑

i=1

1

r
log

(
1 +

|uivi |2|hii |2
σ2‖ui‖2 +

∑n
j :Aij=× |uivj |2|hij |2

)

or

Csum =
r∑

i=1

1

r
log


1 +

|uivi |2
‖ui‖2‖vi‖2

rPt |hii |2

σ2 +
∑n

j :Aij=×
|uivj |2
‖ui‖2‖vj‖2

rPt |hij |2
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The Sum Rate

Csum =
r∑

i=1

1

r
log


1 +

|uivi |2
‖ui‖2‖vi‖2

rPt |hii |2

σ2 +
∑n

j :Aij=×
|uivj |2
‖ui‖2‖vj‖2

rPt |hij |2




Looking at the results of the simulations for ”AltMin”, the value
|uivi |2
‖ui‖2‖vi‖2

was often very small.

Therefore we will impose the extra constraint in the algorithm that

|uivi |2
‖ui‖2‖vi‖2

≥ c , for some 0 ≤ c ≤ 1.
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Constrained Alternating Minimization

Algorithm 3 AltMinCon

Inputs: n, r , S , c, Pt . Initialization: U0 ∈ Rn×r random.
From i = 0 until convergence,

Solve for Vi :

minimize ‖(Ui−1Vi )S‖

subject to ‖v(i)j ‖ ≤ 1 and (u(i−1)
j )Tv(i)j ≥ c‖u(i−1)

j ‖ ∀j

Solve for Ui :

minimize ‖(UiVi )S‖

subject to ‖u(i)
j ‖ ≤ 1 and (u(i)

j )Tv(i)j ≥ c‖v(i)j ‖ ∀j

If algorithm converges to VN and UN ,
normalize columns of VN to satisfy transmit power constraint ‖v(N)

j ‖ ≤
√
rPt .

output VN and UN .

S includes only the set of indices where Aij = 0.
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AltMin vs AltMinCon

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|u T
j
v j |

‖u j‖‖v j‖

j

 

 

AltMin

AltMinCon

Babak Hassibi (Caltech) Paulraj’s 70th Stanford, August 1, 2014 33 / 41



Hexagonal Grid: Results

DoF

FreqReuse Coloring AltMin AltMinCon

DoF 1/18 1/11 1/9 1/11

Sum Rate

FreqReuse Coloring AltMin AltMinCon

N = 8 13.5302 14.7916 6.2415 11.3251

N = 18 23.3473 23.1307 13.0369 20.6579

N = 24 29.0311 29.2044 14.9266 23.7311

N = 32 41.2803 39.0702 22.3766 34.6017

N = 50 60.4578 62.7105 35.1663 54.3691

Better, but still not quite good enough. What is going on?
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Back to the Sum Rate

Csum =
r∑

i=1

1

r
log


1 +

|uivi |2
‖ui‖2‖vi‖2

rPt |hii |2

σ2 +
∑n

j :Aij=×
|uivj |2
‖ui‖2‖vj‖2

rPt |hij |2




Simulations show that the interference terms (which are ignored in
the structure of A) may not be very small.

Maximizing Csum directly is not possible, since we do not know the
hij—we only want to use topological information

However, since we know which cell each user j is in, from the
path-loss model, we have an idea of E |hij |2
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Proposed Algorithm

We therefore propose

min
U∈Rn×r ,V∈Rr×n

∑

(i ,j)∈S,i 6=j

|uivj |2 + λ
∑

(i ,j)/∈S

|uivj |2E |hij |2

where E |hij |2 depends only on the (distance of the) cells in which receiver
i and transmitter j live, subject to

|uivi |2
‖ui‖2‖vi‖2

≥ c , for some 0 ≤ c ≤ 1.

The above can also be solved in an alternating minimization fashion.
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Hexagonal Grid: Results

DoF

FreqReuse Coloring AltMin AltMinCon RateOpt

DoF 1/18 1/11 1/9 1/11 1/8

Sum Rate

FreqReuse Coloring AltMin AltMinCon RateOpt

N = 8 13.5302 14.7916 6.2415 11.3251 15.4326

N = 18 23.3473 23.1307 13.0369 20.6579 28.1829

N = 24 29.0311 29.2044 14.9266 23.7311 32.2458

N = 32 41.2803 39.0702 22.3766 34.6017 47.0489

N = 50 60.4578 62.7105 35.1663 54.3691 70.4724

We get 10%-20% improvement in the sum rate

Babak Hassibi (Caltech) Paulraj’s 70th Stanford, August 1, 2014 37 / 41



Hexagonal Grid: Results

DoF

FreqReuse Coloring AltMin AltMinCon RateOpt

DoF 1/18 1/11 1/9 1/11 1/8

Sum Rate

FreqReuse Coloring AltMin AltMinCon RateOpt

N = 8 13.5302 14.7916 6.2415 11.3251 15.4326

N = 18 23.3473 23.1307 13.0369 20.6579 28.1829

N = 24 29.0311 29.2044 14.9266 23.7311 32.2458

N = 32 41.2803 39.0702 22.3766 34.6017 47.0489

N = 50 60.4578 62.7105 35.1663 54.3691 70.4724

We get 10%-20% improvement in the sum rate

Babak Hassibi (Caltech) Paulraj’s 70th Stanford, August 1, 2014 37 / 41



Hexagonal Grid: Results

DoF

FreqReuse Coloring AltMin AltMinCon RateOpt

DoF 1/18 1/11 1/9 1/11 1/8

Sum Rate

FreqReuse Coloring AltMin AltMinCon RateOpt

N = 8 13.5302 14.7916 6.2415 11.3251 15.4326

N = 18 23.3473 23.1307 13.0369 20.6579 28.1829

N = 24 29.0311 29.2044 14.9266 23.7311 32.2458

N = 32 41.2803 39.0702 22.3766 34.6017 47.0489

N = 50 60.4578 62.7105 35.1663 54.3691 70.4724

We get 10%-20% improvement in the sum rate

Babak Hassibi (Caltech) Paulraj’s 70th Stanford, August 1, 2014 37 / 41



Ad hoc Network Example

N=100 Tx-Rx pairs
randomly placed in a
20× 20 square

max distance btw Tx-Rx is 1

average SNR to desired user
= 20db

path loss model:

hij ∼ N (0,
(
dij
r0

)−4.0
) 0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

N=30

 

 
BS
User

Algorithms

1 greedy Coloring (Coloring)

2 matrix Completion (AltMin)

3 constrained matrix Completion (AltMinCon)

4 rate optimization (RateOpt)
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Ad hoc Network Results

Average values over 25 realizations

Coloring AltMin AltMinCon RateOpt
45

50

55

60

65

70

75

80

85

90

S
u
m

R
a
t
e

ad hoc network

Coloring AltMin AltMinCon RateOpt

Rank 6.28 6.16 6.16 3.28

Sum Rate 56.0615 51.0674 55.9420 77.7062

We obtain a %40 improvement in the sum rate.
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Discussion and Conclusion

Interference alignment
I unreasonable CSIT assumptions (not very practical)

Topological interference alignmment
I requires only topological information of the network; can significantly

improve the DoF
I reduces to low rank matrix completion
I related to network coding, index coding, secret sharing (when over

finite fields)

In practice DoF can be misleading
I developed alternative algorithms (moved away somewhat from TIM)
I promising preliminary results: there is something to be had
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Possible Future Work

Algorithmic issues: theoretical analysis, fast implementation

1 What are good initializations for the various Alternating Projection
methods?

2 Can we give conditions for optimality of the solution of AP method, or
performance bounds otherwise?

3 Other matrix completion-based approaches

Identify scenarios where we can have an advantage

1 Can we analytically determine the advantage of TIM in ad-hoc and
cellular networks using random geometric graph theory?

2 What are there other practical considerations to take into account?

How to combine this with MIMO

Study of the finite field problem
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