

Cyclic Communication and Inseparability in MIMO Relay Channels

Aydin Sezgin joint work with Anas Chaaban

Institute of Digital Communication Systems RUB, Bochum

Outline

1 Motivation: From one-way to multi-way

- 2 The MIMO Y-channel: From single-antenna to multiple-antennas
- **3** Main result: From capacity to DoF
- Insights and ingredients Channel diagonalization: Separability of communication structure Alignment, Compute-and-forward Transmission strategy(3-users)
- **5** Extensions and Conclusion

Outline

1 Motivation: From one-way to multi-way

- 2 The MIMO Y-channel: From single-antenna to multiple-antennas
- 3 Main result: From capacity to DoF
- Insights and ingredients
 Channel diagonalization: Separability of communication structure
 Alignment, Compute-and-forward
 Transmission strategy(3-users)
 - Extensions and Conclusion

Towards 50B devices in 2020!

Source: Ericsson, 2010

Increasing number of connected devices (IoT, M2M, etc.)

Towards 50B devices in 2020!

More sophisticated network topologies!

Towards 50B devices in 2020!

More sophisticated network topologies!

Towards 50B devices in 2020!

More sophisticated network topologies!

Device-to-device

Towards 50B devices in 2020!

Towards 50B devices in 2020!

Towards 50B devices in 2020!

Towards 50B devices in 2020!

• Important factor: Relaying!

Towards 50B devices in 2020!

Important factor: Relaying!

Question

Is communication mainly one-way?

Multi-way Communications

• Part of our daily communication is uni-directional

Multi-way Communications

- Part of our daily communication is uni-directional
- A large share is bi-directional (video conferencing e.g.)
 ⇒ Two-way channel

Multi-way Communications

- Part of our daily communication is uni-directional
- A large share is bi-directional (video conferencing e.g.)
 ⇒ Two-way channel
- Distant nodes
 ⇒ Two-way relay channel

Multi-way Communications

- Part of our daily communication is uni-directional
- A large share is bi-directional (video conferencing e.g.)
 ⇒ Two-way channel
- Distant nodes
 ⇒ Two-way relay channel
- More than 2 nodes⇒ Multi-way relay channel (MRC).

Multi-way Relaying

• Multi-cast MRC: a message has multiple destinations

Multi-way Relaying

- Multi-cast MRC: a message has multiple destinations
- Uni-cast MRC (Y-channel): a message has one destination

Outline

Motivation: From one-way to multi-way

2 The MIMO Y-channel: From single-antenna to multiple-antennas

3 Main result: From capacity to DoF

 Insights and ingredients Channel diagonalization: Separability of communication structure Alignment, Compute-and-forward Transmission strategy(3-users)

Extensions and Conclusion

Uplink:

• Tx signal: $\mathbf{x}_i \in \mathbb{C}^M$, power P

Uplink:

- Tx signal: $\mathbf{x}_i \in \mathbb{C}^M$, power P
- Uplink channels: $\mathbf{H}_i \in \mathbb{C}^{N \times M}$

Uplink:

- Tx signal: $\mathbf{x}_i \in \mathbb{C}^M$, power P
- Uplink channels: $\mathbf{H}_i \in \mathbb{C}^{N \times M}$

Downlink:

Uplink:

- Tx signal: $\mathbf{x}_i \in \mathbb{C}^M$, power P
- Uplink channels: $\mathbf{H}_i \in \mathbb{C}^{N \times M}$

Downlink:

• Relay signal: $\mathbf{x}_r \in \mathbb{C}^N$, power P

Uplink:

- Tx signal: $\mathbf{x}_i \in \mathbb{C}^M$, power P
- Uplink channels: $\mathbf{H}_i \in \mathbb{C}^{N \times M}$

Downlink:

- Relay signal: $\mathbf{x}_r \in \mathbb{C}^N$, power P
- Downlink channels: $\mathbf{D}_i \in \mathbb{C}^{M \times N}$

Single-user (MIMO P2P):

Input covariance \mathbf{Q} , $tr(\mathbf{Q}) \leq P$

Capacity to Capacity Region

Single-user (MIMO P2P):

Capacity: $C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$

Capacity to Capacity Region

Single-user (MIMO P2P):

Capacity:
$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

0

achievable rate

C

R

Input covariance \mathbf{Q} , $tr(\mathbf{Q}) \leq P$

Multi-user (MIMO MAC):

Single-user (MIMO P2P):

н Tx

Capacity:
$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Input covariance \mathbf{Q} , $tr(\mathbf{Q}) < P$

Multi-user (MIMO MAC):

Capacity region: $R_i < \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|,$

Single-user (MIMO P2P):

н Tx

Capacity:
$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Input covariance \mathbf{Q} , $tr(\mathbf{Q}) < P$

Multi-user (MIMO MAC):

Capacity region: $R_i < \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|,$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Single-user (MIMO P2P):

н Tx

Capacity:
$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Input covariance \mathbf{Q} , $tr(\mathbf{Q}) < P$

 \mathbf{H}_2

Multi-user (MIMO MAC):

Capacity region: $R_i < \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|,$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Tx 2

Outline

1 Motivation: From one-way to multi-way

2 The MIMO Y-channel: From single-antenna to multiple-antennas

3 Main result: From capacity to DoF

 Insights and ingredients
 Channel diagonalization: Separability of communication structure
 Alignment, Compute-and-forward
 Transmission strategy(3-users)

Extensions and Conclusion

Single-user (MIMO P2P):

Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Single-user (MIMO P2P):

Capacity:

 $C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$

Optimization: water-filling

Single-user (MIMO P2P):

Capacity:

 $C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$

Optimization: water-filling

DoF:

• $M \operatorname{Tx}$ antennas, $N \operatorname{Rx}$ antennas

Single-user (MIMO P2P):

Capacity:

 $C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$

Optimization: water-filling

DoF:

• M Tx antennas, N Rx antennas

 $\Rightarrow \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$
Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

- M Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$
- $\Rightarrow \ C \approx \min\{M,N\}\log(P) \quad \text{ at high } P$

Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

- M Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$
- $\Rightarrow \ C \approx \min\{M,N\}\log(P) \quad \text{ at high } P$
 - <u>DoF</u>: $d = \lim_{P \to \infty} \frac{C}{\log(P)} = \operatorname{rank}(\mathbf{H}) \implies d = \min\{M, N\}$

Single-user (MIMO P2P):

Capacity:

$$C = \log |\mathbf{I} + \mathbf{H}\mathbf{Q}\mathbf{H}^H|$$

Optimization: water-filling

DoF:

- M Tx antennas, N Rx antennas
- $\Rightarrow \ \mathbf{H} \in \mathbb{C}^{N \times M} \Rightarrow \mathsf{rank}(\mathbf{H}) = \min\{M, N\}$
- $\Rightarrow \ C \approx \min\{M, N\} \log(P) \quad \text{ at high } P$
- <u>DoF</u>: $d = \lim_{P \to \infty} \frac{C}{\log(P)} = \operatorname{rank}(\mathbf{H}) \implies d = \min\{M, N\}$
- \Rightarrow Capacity equivalent to that of d parallel SISO P2P channels!

(more on that later)

Multi-user (MIMO MAC):

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

DoF:

• M_i Tx antennas, N Rx antennas

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\} \log(P)$ at high P

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\} \log(P)$ at high P

• DoF:
$$d_i = \lim_{P \to \infty} \frac{R_i}{\log(P)}$$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\} \log(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{\log(P)}$
- \Rightarrow DoF region: $d_i \leq \mathsf{rank}(\mathbf{H}_i)$, $d_1 + d_2 \leq \mathsf{rank}([\mathbf{H}_1, \mathbf{H}_2])$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

DoF:

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\} \log(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{\log(P)}$
- \Rightarrow DoF region: $d_i \leq \operatorname{rank}(\mathbf{H}_i)$, $d_1 + d_2 \leq \operatorname{rank}([\mathbf{H}_1, \mathbf{H}_2])$

 $\Rightarrow d_1 + d_2 = \min\{M_1 + M_2, N\}$

Multi-user (MIMO MAC):

Capacity region:

 $R_i \leq \log |\mathbf{I} + \mathbf{H}_i \mathbf{Q}_i \mathbf{H}_i^H|$ $R_1 + R_2 \leq \log |\mathbf{I} + \mathbf{H}_1 \mathbf{Q}_1 \mathbf{H}_1^H + \mathbf{H}_2 \mathbf{Q}_2 \mathbf{H}_2^H|$

Optimization: Iterative water-filling

- M_i Tx antennas, N Rx antennas
- $\Rightarrow \mathbf{H}_i \in \mathbb{C}^{N \times M_i} \Rightarrow \mathsf{rank}(\mathbf{H}_i) = \min\{M_i, N\}$
 - $C_{\Sigma} \approx \min\{M_1 + M_2, N\} \log(P)$ at high P
- <u>DoF</u>: $d_i = \lim_{P \to \infty} \frac{R_i}{\log(P)}$
- \Rightarrow DoF region: $d_i \leq \operatorname{rank}(\mathbf{H}_i)$, $d_1 + d_2 \leq \operatorname{rank}([\mathbf{H}_1, \mathbf{H}_2])$
- $\Rightarrow d_1 + d_2 = \min\{M_1 + M_2, N\}$
- \Rightarrow Sum-capacity equivalent to that of $d_1 + d_2$ parallel SISO P2P channels!

Definition

 R_{ij} : Rate of signal from *i* to *j*

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{\log(P)}$

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P \to \infty} \frac{R_{ij}}{\log(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{\log(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

 $+ d_{\Sigma}$ is an overall performance metric for a network

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{\log(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ d_{\Sigma}$ is an overall performance metric for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{\log(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ d_{\Sigma}$ is an overall performance metric for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{\log(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ d_{\Sigma}$ is an overall performance metric for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

Definition

- R_{ij} : Rate of signal from i to j
- d_{ij} : DoF defined as $\lim_{P\to\infty} \frac{R_{ij}}{\log(P)}$
- d_{Σ} : sum-DoF = $\sum d_{ij}$
- \mathcal{D} : Set of simultaneously achievable DoF's d_{ij}

- $+ d_{\Sigma}$ is an overall performance metric for a network
- $-~d_{\Sigma}$ doesn't provide insights on the trade-off between individual DoF's

Goal

Find the DoF region of the MIMO Y-channel.

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$ $d_{12} + d_{13} + d_{32} \le N$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$ $d_{12} + d_{13} + d_{32} \le N$ $\vdots \qquad \vdots \qquad \vdots \qquad < \vdots$

The DoF region of a 3-user MIMO Y-channel with $N \leq M$ is described by

 $d_{12} + d_{13} + d_{23} \le N$ $d_{12} + d_{13} + d_{32} \le N$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \le \vdots$

Theorem (DoF region)

DoF region for $N \leq M$ described by

 $d_{p_1p_2} + d_{p_1p_3} + d_{p_2p_3} \le N, \quad \forall \mathbf{p}$

where \mathbf{p} is a permutation of (1, 2, 3) and p_i is its *i*-th component.

Outline

1 Motivation: From one-way to multi-way

- 2 The MIMO Y-channel: From single-antenna to multiple-antennas
- **3** Main result: From capacity to DoF
- Insights and ingredients Channel diagonalization: Separability of communication structure Alignment, Compute-and-forward Transmission strategy(3-users)

Message-flow-graph for upper bounds:

 $d_{p_1p_2} + d_{p_1p_3} + d_{p_2p_3} \le N$

Message-flow-graph for upper bounds:

 $d_{p_1p_2} + d_{p_1p_3} + d_{p_2p_3} \le N$

Message-flow-graph for $d = (2, 0, 1, 1, 1, 0) \in \mathcal{D}$:

 p_3

Optimal strategy should be able to 'resolve' cycles!

Anas Chaaban, Aydin Sezgin

Multi-way Communications

Outline

1 Motivation: From one-way to multi-way

- 2 The MIMO Y-channel: From single-antenna to multiple-antennas
- **3** Main result: From capacity to DoF

4 Insights and ingredients

Channel diagonalization: Separability of communication structure

Alignment, Compute-and-forward Transmission strategy(3-users)

Extensions and Conclusion

Uplink-downlink Separability

Two-way channels are in general not separable

Uplink-downlink Separability

Two-way channels are in general not separable

 $\Rightarrow\,$ uplink and downlink have to be considered jointly

Two-way channels are in general not separable

- \Rightarrow uplink and downlink have to be considered jointly
- \Rightarrow \mathbf{x}_i and \mathbf{y}_i are dependent

Two-way channels are in general not separable

- \Rightarrow uplink and downlink have to be considered jointly
- \Rightarrow \mathbf{x}_i and \mathbf{y}_i are dependent

Basic Gaussian two-way channel is separable

Two-way channels are in general not separable

- \Rightarrow uplink and downlink have to be considered jointly
- \Rightarrow \mathbf{x}_i and \mathbf{y}_i are dependent

Basic Gaussian two-way channel is separable

 \Rightarrow uplink and downlink can be considered separately

Two-way channels are in general not separable

- \Rightarrow uplink and downlink have to be considered jointly
- \Rightarrow \mathbf{x}_i and \mathbf{y}_i are dependent

Basic Gaussian two-way channel is separable

- \Rightarrow uplink and downlink can be considered separately
- \Rightarrow \mathbf{x}_i and \mathbf{y}_i are independent

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

 $M \ge N$: ZF pre-coding:

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

• Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

 $M \geq N:$ ZF pre-coding:

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$

N parallel SISO P2P channels!

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$

 $M \leq N$: ZF post-coding:

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- $M \ge N$: ZF pre-coding:
 - Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
 - $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

M parallel SISO P2P channels!

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

M parallel SISO P2P channels!

DoF achievable by treating each sub-channel separately \Rightarrow Separability!

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix \mathbf{H} to a diagonal matrix.

MIMO $M \times N$ P2P channel can be diagonalized by zero-forcing (ZF)

- Pseudo-inverse: $\mathbf{H}^{\dagger} = \mathbf{H}^{H} [\mathbf{H}\mathbf{H}^{H}]^{-1}$
- $\mathbf{H}^{\dagger}\mathbf{H} = \mathbf{I}$
- $M \leq N$: ZF post-coding:
 - Pseudo-inverse: $\mathbf{H}^{\ddagger} = [\mathbf{H}^{H}\mathbf{H}]^{-1}\mathbf{H}^{H}$
 - $\mathbf{H}\mathbf{H}^{\ddagger} = \mathbf{I}$

M parallel SISO P2P channels!

DoF achievable by treating each sub-channel separately \Rightarrow Separability! MAC and BC are also separable

Outline

1 Motivation: From one-way to multi-way

2 The MIMO Y-channel: From single-antenna to multiple-antennas

3 Main result: From capacity to DoF

4 Insights and ingredients

Channel diagonalization: Separability of communication structure Alignment, Compute-and-forward

Transmission strategy(3-users)

Extensions and Conclusion

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

• \mathbf{V}_1 , \mathbf{V}_2 arbitrary

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

• V_1 , V_2 arbitrary

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

- \mathbf{V}_1 , \mathbf{V}_2 arbitrary
- $\mathbf{H}_1\mathbf{V}_1 = \mathbf{H}_2\mathbf{V}_2$

Definition (Signal alignment)

Placing two signals x_1 and x_2 in signal space so that span $(x_1) = span(x_2)$.

Two signals can be aligned by pre-coding: $\mathbf{x}_1 = \mathbf{V}_1 u_1$ $\mathbf{x}_2 = \mathbf{V}_2 u_2$

- \mathbf{V}_1 , \mathbf{V}_2 arbitrary
- $\mathbf{H}_1\mathbf{V}_1 = \mathbf{H}_2\mathbf{V}_2$

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals $a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2$.

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals $a_1\mathbf{x}_1 + a_2\mathbf{x}_2$.

CF can be accomplished by using lattice codes.

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals $a_1\mathbf{x}_1 + a_2\mathbf{x}_2$.

CF can be accomplished by using lattice codes.

• Property: u_1 and u_2 lattice codes $\Rightarrow u_1 + u_2$ lattice code!

Outline

1 Motivation: From one-way to multi-way

- 2 The MIMO Y-channel: From single-antenna to multiple-antennas
- **3** Main result: From capacity to DoF

4 Insights and ingredients

Channel diagonalization: Separability of communication structure Alignment, Compute-and-forward Transmission strategy(3-users)

Extensions and Conclusion

Achievability of $\ensuremath{\mathbb{D}}$ is proved using:

Achievability of $\ensuremath{\mathfrak{D}}$ is proved using:

Channel diagonalization:

MIMO Y-channel

Achievability of $\ensuremath{\mathfrak{D}}$ is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} \\ \mbox{Y-channel} \end{array} \rightarrow \begin{array}{c} N \ \mbox{SISO} \\ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

• Bi-directional: signal-alignment/compute-forward

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

- Bi-directional: signal-alignment/compute-forward
- Cyclic: signal-alignment/compute-forward

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

- Bi-directional: signal-alignment/compute-forward
- Cyclic: signal-alignment/compute-forward
- Uni-directional: decode-forward
Overview

Achievability of \mathcal{D} is proved using:

 $\begin{array}{c} \mbox{Channel diagonalization:} \\ \mbox{MIMO} & N \ \mbox{SISO} \\ \mbox{Y-channel} & \rightarrow \ \mbox{Y-channels} \\ \mbox{(sub-channels)} \end{array}$

Information exchange:

- Bi-directional: signal-alignment/compute-forward
- Cyclic: signal-alignment/compute-forward
- Uni-directional: decode-forward

Resource allocation: distribute sub-channels over users

- a MIMO Y-channel with M = N = 3
- actually looks like this!

 \mathbf{x}_r

Downlink

 D_2

User 2

 \mathbf{y}_2

- a MIMO Y-channel with M = N = 3
- actually looks like this!
- Pre- and post-code using the Moore-Penrose pseudo inverse

- a MIMO Y-channel with M = N = 3
- actually looks like this!
- Pre- and post-code using the Moore-Penrose pseudo inverse
- Channel Diagonalization $\Rightarrow N$ sub-channels

Information transfer

•

Information transfer

- signal-alignment
- compute-forward
- exchanges 3 symbols
- requires 2 sub-channels (up- and down-link)
- efficiency 3/2 DoF/dimension

Information transfer

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

• bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

Bi-directional + cyclic + uni-directional:

• bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)
- cyclic achieves $d_{12}^c = d_{23}^c = d_{31}^c = 1$ over 2 sub-channels

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)
- cyclic achieves $d_{12}^c = d_{23}^c = d_{31}^c = 1$ over 2 sub-channels
- residual DoF (0, 0, 0, 0, 0, 0)

DoF tuple ${\bf d}=(d_{12},d_{13},d_{21},d_{23},d_{31},d_{32})=(2,0,1,1,1,0),$ Y-channel with $3=N\leq M$

Uni-directional only:

• 5 sub-channels > N!

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Bi-directional + uni-directional:

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1,0,0,1,1,0)
- uni-directional needs 3 more sub-channels
- total number of sub-channels 4 > N!

- bi-directional achieves $d_{12}^b = d_{21}^b = 1$ over 1 sub-channel
- residual DoF (1, 0, 0, 1, 1, 0)
- cyclic achieves $d_{12}^c = d_{23}^c = d_{31}^c = 1$ over 2 sub-channels
- residual DoF (0, 0, 0, 0, 0, 0)
- total number of sub-channels 3 = N!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32})$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels
- 2) requires a_{ij} sub-channel
- 3) resolves 2-cycles

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^{b} sub-channels
- 3) resolves 2-cycles

4) residual DoF
$$d'_{ij} = d_{ij} - d^b_{ij}$$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional: 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels 3) resolves 2-cycles 4) residual DoF $d'_{ij} = d_{ij} - d_{ij}^b$

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!
Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d_{ij}', d_{jk}', d_{ki}'\}$

Consider a DoF tuple $d = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$ 2) requires d_{ij}^{b} sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

1) set
$$d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d'_{ij}, d'_{jk}, d'_{ki}\}$$

2) requires $2d_{ij}^c$ sub-channels

Consider a DoF tuple $d = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ii}^b = d_{ii}^b = \min\{d_{ii}, d_{ii}\}$ 2) requires d_{ij}^{b} sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ii} = d_{ii} d^b_{ii}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{ik}^c = d_{ki}^c = \min\{d_{ij}', d_{ik}', d_{ki}'\}$ 2) requires $2d_{ii}^c$ sub-channels
- 3) resolves 3-cycles

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d_{ij}^c, d_{jk}^c, d_{ki}^c\}$
- 2) requires $2d_{ij}^c$ sub-channels
- 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d'_{ij}, d'_{jk}, d'_{ki}\}$ 2) requires $2d_{ij}^c$ sub-channels 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Uni-directional:

1) set $d_{ij}^u = d_{ij}^{\prime\prime}$

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d'_{ij}, d'_{jk}, d'_{ki}\}$ 2) requires $2d_{ij}^c$ sub-channels
- 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Uni-directional:

- 1) set $d_{ij}^{u} = d_{ij}''$
- 2) requires d_{ij}^u sub-channels

Consider a DoF tuple $\mathbf{d} = (d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}) \Rightarrow 2$ -cycles and 3-cycles!

Bi-directional:

- 1) set $d_{ij}^b = d_{ji}^b = \min\{d_{ij}, d_{ji}\}$
- 2) requires d_{ij}^b sub-channels
- 3) resolves 2-cycles
- 4) residual DoF $d'_{ij} = d_{ij} d^b_{ij}$

Residual DoF tuple (e.g.) $\mathbf{d}' = (d'_{12}, 0, 0, d'_{23}, d'_{31}, 0) \Rightarrow 3$ -cycle!

Cyclic:

- 1) set $d_{ij}^c = d_{jk}^c = d_{ki}^c = \min\{d'_{ij}, d'_{jk}, d'_{ki}\}$ 2) requires $2d_{ij}^c$ sub-channels
- 3) resolves 3-cycles
- 4) residual DoF $d_{ij}^{\prime\prime}=d_{ij}^{\prime}-d_{ij}^c$

Uni-directional:

- 1) set $d_{ij}^{u} = d_{ij}''$
- 2) requires d_{ij}^u sub-channels

 \mathbf{d} achieved!

Outline

1 Motivation: From one-way to multi-way

- 2 The MIMO Y-channel: From single-antenna to multiple-antennas
- 3 Main result: From capacity to DoF
- Insights and ingredients Channel diagonalization: Separability of communication structure Alignment, Compute-and-forward Transmission strategy(3-users)

For the K-user Y-channel with $N \leq M$:

• 2-cycles up to *K*-cycles,

- 2-cycles up to *K*-cycles,
- *l*-cycles resolved by an *l*-cyclic strategy

- 2-cycles up to *K*-cycles,
- *l*-cycles resolved by an *l*-cyclic strategy
- exchanges ℓ symbols

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires ℓ − 1 dimensions

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires $\ell 1$ dimensions
- efficiency $\ell/(\ell-1)$

For the K-user Y-channel with $N \leq M$:

- 2-cycles up to *K*-cycles,
- ℓ -cycles resolved by an ℓ -cyclic strategy
- exchanges ℓ symbols
- requires $\ell 1$ dimensions
- efficiency $\ell/(\ell-1)$
- DoF region described by

$$\sum_{i=1}^{K-1} \sum_{j=i+1}^{K} d_{p_i p_j} \le N, \quad \forall \mathbf{p}$$

where \mathbf{p} is a permutation of $(1, 2, \cdots, K)$.

• Studied the K-user MIMO Y-channel

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization
 - Signal-alignment with compute-forward

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization
 - Signal-alignment with compute-forward
 - decode-forward

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization
 - Signal-alignment with compute-forward
 - decode-forward
- DoF region characterized

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization
 - Signal-alignment with compute-forward
 - decode-forward
- DoF region characterized
- Cyclic strategy required joint encoding over multiple sub-channels:
 - Downlink and uplink are seperable

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization
 - Signal-alignment with compute-forward
 - decode-forward
- DoF region characterized
- Cyclic strategy required joint encoding over multiple sub-channels:
 - Downlink and uplink are seperable
 - Subchannels are not decomposable (seperable)

- Studied the K-user MIMO Y-channel
- Combination of:
 - Channel diagonalization
 - Signal-alignment with compute-forward
 - decode-forward
- DoF region characterized
- Cyclic strategy required joint encoding over multiple sub-channels:
 - Downlink and uplink are seperable
 - Subchannels are not decomposable (seperable)

Thank You

Related work

- C. Shannon, *Two-way communication channels*, Proc. of Fourth Berkeley Symposium on Mathematics, Statistics, and Probability, 1961.
- B. Rankov and A. Wittneben, Spectral efficient signaling for half-duplex relay channels, Proc. of the Asilomar Conference on Signals, Systems, and Computers, 2005.
- 3 D. Gündüz, A. Yener, A. Goldsmith, and H. V. Poor, *The multi-way relay channel*, IEEE Transactions on Information Theory, Vol. 59(1), pp. 51-63.
- In N. Lee, J.-B. Lim, and J. Chun, Degrees of freedom of the MIMO Y channel: Signal space alignment for network coding, IEEE Trans. on Info. Theory, 2010.
- **5** A. Chaaban and A. Sezgin, *Approximate Sum-Capacity of the Y-channel*, IEEE Transactions on Information Theory, Vol.59(9), pp.5723-5740.
- 6 A. Chaaban and A. Sezgin, Multi-way communications, Foundations and Trends in Communications and Information Theory, now publishers, in review.

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

$$N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, \ j \neq i}^{3} d_{ij}^{u} \qquad (d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})$$

Total number of dimensions required to achieve $\mathbf{d} \in \mathcal{D}$:

Bi-directional	2 symbols	1 sub-channel
Cyclic	3 symbols	2 sub-channels
Uni-directional	1 symbol	1 sub-channel

 $(d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})$

$$N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, \ j \neq i}^{3} d_{ij}^{u}$$
$$= \sum_{i=1}^{3} \sum_{j=1, \ j \neq i}^{3} d_{ij} - \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} - \sum_{j=2}^{3} d_{1j}^{c}$$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

$$N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} d_{ij}^{a} + \sum_{i=1}^$$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \underbrace{\sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b}}_{i=1} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u}}_{j=1, j \neq i} (d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})$ $= \underbrace{\sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij} - \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} - \sum_{j=2}^{3} d_{1j}^{c}}_{d_{1j}^{c} - \sum_{i=1}^{3} d_{ij}^{c} - \sum_{j=2}^{3} d_{1j}^{c}} (d_{ij} + d_{ji} - d_{ij}^{b} = \max\{d_{ij}, d_{ji}\})$ $= \underbrace{\max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\}}_{d_{12} + d_{23} + d_{31} e, e, \Rightarrow d_{13}^{c} = 0, d_{12}^{b} - d_{12}^{c} - d_{13}^{c}}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c} + \sum_{i=1}^{3} d_{ij}^{c} + \sum_{j=2}^{3} d_{1j}^{c} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{c} + \sum_{i=1}^{3} d_{ij}^{c} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{ij}^{b} + d_{ij}^{c} + d_{ij}^{c}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

 $N_{s} = \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} + \sum_{j=2}^{3} 2d_{1j}^{c} + \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij}^{u} \qquad (d_{ij}^{u} = d_{ij} - d_{ij}^{b} - d_{ij}^{c})$ $= \sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} d_{ij} - \sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{ij}^{b} - \sum_{j=2}^{3} d_{1j}^{c} \qquad (d_{ij} + d_{ji} - d_{ij}^{b} = \max\{d_{ij}, d_{ji}\})$ $= \underbrace{\max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\}}_{d_{12} + d_{23} + d_{31} - d_{12}^{c} = 0, d_{12}^{b} = d_{12} - d_{12}^{b} e.g.)}_{d_{12}^{c} + d_{23} + d_{31}}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

bi-directional cyclic uni-di uni-directional $N_s = \sum_{i=1}^{m} \sum_{j=i+1}^{m} d_{ij}^b + \sum_{j=2}^{m} 2d_{1j}^c + \sum_{i=1}^{m} \sum_{j=1}^{m} d_{ij}^u$ $(d_{ij}^u = d_{ij} - d_{ij}^b - d_{ij}^c)$ $=\sum_{i=1}^{3}\sum_{j=1, j\neq i}^{3}d_{ij} - \sum_{i=1}^{2}\sum_{j=i+1}^{3}d_{ij}^{b} - \sum_{i=2}^{3}d_{1j}^{c} \qquad (d_{ij} + d_{ji} - d_{ij}^{b} = \max\{d_{ij}, d_{ji}\})$ $= \max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\} - d_{12}^c - d_{13}^c$ $d_{12}+d_{23}+d_{31}$ e.g. $\Rightarrow d_{13}^c=0, \ d_{12}^b=d_{21}$ $(d_{12}^c = d_{12} - d_{12}^b e.g.)$ $= d_{12} + d_{23} + d_{31} - d_{12}^c$ $= d_{12}^b + d_{23} + d_{31}$ $= d_{21} + d_{23} + d_{31}$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

bi-directional cyclic uni-di uni-directional $N_s = \sum_{i=1}^{m} \sum_{j=i+1}^{m} d_{ij}^b + \sum_{j=2}^{m} 2d_{1j}^c + \sum_{i=1}^{m} \sum_{j=1}^{m} d_{ij}^u$ $(d_{ij}^u = d_{ij} - d_{ij}^b - d_{ij}^c)$ $=\sum_{i=1}^{3}\sum_{j=1, j\neq i}^{3}d_{ij} - \sum_{i=1}^{2}\sum_{j=i+1}^{3}d_{ij}^{b} - \sum_{i=2}^{3}d_{1j}^{c} \qquad (d_{ij} + d_{ji} - d_{ij}^{b} = \max\{d_{ij}, d_{ji}\})$ $= \max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\} - d_{12}^c - d_{13}^c$ $d_{12}+d_{23}+d_{31}$ e.g. $\Rightarrow d_{13}^c=0, \ d_{12}^b=d_{21}$ $(d_{12}^c = d_{12} - d_{12}^b e.g.)$ $= d_{12} + d_{23} + d_{31} - d_{12}^c$ $= d_{12}^b + d_{23} + d_{31}$ $= d_{21} + d_{23} + d_{31}$

No cycles $\Rightarrow N_s \leq N$

Total number of	Bi-directional	2 symbols	1 sub-channel
dimensions required to	Cyclic	3 symbols	2 sub-channels
achieve $\mathbf{d} \in \mathcal{D}$:	Uni-directional	1 symbol	1 sub-channel

bi-directional cyclic uni-directional $N_s = \sum_{i=1}^{m} \sum_{j=i+1}^{m} d_{ij}^b + \sum_{j=2}^{m} 2d_{1j}^c + \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i\neq i}^{m} d_{ij}^u$ $(d_{ij}^u = d_{ij} - d_{ij}^b - d_{ii}^c)$ $=\sum_{i=1}^{3}\sum_{j=1, j\neq i}^{3}d_{ij} - \sum_{i=1}^{2}\sum_{j=i+1}^{3}d_{ij}^{b} - \sum_{i=2}^{3}d_{1j}^{c} \qquad (d_{ij} + d_{ji} - d_{ij}^{b} = \max\{d_{ij}, d_{ji}\})$ $= \max\{d_{12}, d_{21}\} + \max\{d_{13}, d_{31}\} + \max\{d_{23}, d_{32}\} - d_{12}^c - d_{13}^c$ $d_{12}+d_{23}+d_{31}$ e.g. $\Rightarrow d_{13}^c=0, \ d_{12}^b=d_{21}$ $(d_{12}^c = d_{12} - d_{12}^b e.g.)$ $= d_{12} + d_{23} + d_{31} - d_{12}^c$ $= d_{12}^b + d_{23} + d_{31}$ $= d_{21} + d_{23} + d_{31}$

No cycles $\Rightarrow N_s \leq N \Rightarrow All \mathbf{d} \in \mathcal{D}$ are achievable

Consider any reliable scheme for the 4-user MIMO MRC

Users can decode their desired signals

Give m_{23} and \mathbf{y}_2 to user 1 as side info.

Now, user 1 has the info. available at user 2

\Rightarrow User 1 can decode m_{32}

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}, \mathbf{y}_2})$

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}}, \mathbf{y}_2)$

$$\Rightarrow R_{21} + R_{31} + R_{32} \le I\left(\mathbf{x}_r; \mathbf{y}_1, \mathbf{y}_2\right) = I\left(\mathbf{x}_r; \begin{bmatrix} \mathbf{D}_1 \\ \mathbf{D}_2 \end{bmatrix} \mathbf{x}_r + \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix}\right) \quad \text{P2P Channel}$$

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}}, \mathbf{y}_2)$

$$\Rightarrow R_{21} + R_{31} + R_{32} \le I\left(\mathbf{x}_r; \mathbf{y}_1, \mathbf{y}_2\right) = I\left(\mathbf{x}_r; \begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix} \mathbf{x}_r + \begin{bmatrix}\mathbf{z}_1\\\mathbf{z}_2\end{bmatrix}\right)$$
$$\Rightarrow d_{21} + d_{31} + d_{32} \le \operatorname{rank}\left(\begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix}\right) = N$$

P2P Channel

Upper bound

User 1 can decode (m_{21}, m_{31}, m_{32}) from $(m_{12}, m_{13}, \mathbf{y}_1, \widetilde{m_{23}, \mathbf{y}_2})$

$$\Rightarrow R_{21} + R_{31} + R_{32} \le I\left(\mathbf{x}_r; \mathbf{y}_1, \mathbf{y}_2\right) = I\left(\mathbf{x}_r; \begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix}\mathbf{x}_r + \begin{bmatrix}\mathbf{z}_1\\\mathbf{z}_2\end{bmatrix}\right)$$
$$\Rightarrow d_{21} + d_{31} + d_{32} \le \operatorname{rank}\left(\begin{bmatrix}\mathbf{D}_1\\\mathbf{D}_2\end{bmatrix}\right) = N$$

P2P Channel

Considering different combinations of users gives the desired outer bound

$$\sum_{i=1}^{2} \sum_{j=i+1}^{3} d_{p_i p_j} \le N, \quad \forall \mathbf{p}$$