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Multi-way Relaying

• Multi-cast MRC: a message has multiple destinations

• Uni-cast MRC (Y-channel): a message has one destination
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Back to the Y-channel

Definition

Rij : Rate of signal from i to j

dij : DoF defined as limP→∞
Rij

log(P )

dΣ: sum-DoF =
∑

dij

D: Set of simultaneously achievable
DoF’s dij

d13

d12

dΣ

?

??

?

+ dΣ is an overall performance metric for a network

− dΣ doesn’t provide insights on the trade-off between individual DoF’s

Goal

Find the DoF region of the MIMO Y-channel.
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Main result

The DoF region of a 3-user MIMO Y-channel with N ≤M is described by

d12 + d13 + d23 ≤ N

d12 + d13 + d32 ≤ N

...
...

... ≤
...

Theorem (DoF region)

DoF region for N ≤M described by

dp1p2 + dp1p3 + dp2p3 ≤ N, ∀p

where p is a permutation of (1, 2, 3) and pi is its i-th component.
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Outline

1 Motivation: From one-way to multi-way

2 The MIMO Y-channel: From single-antenna to multiple-antennas

3 Main result: From capacity to DoF

4 Insights and ingredients
Channel diagonalization: Separability of communication
structure
Alignment, Compute-and-forward
Transmission strategy(3-users)

5 Extensions and Conclusion
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Insight from the upper bounds

Message-flow-graph for upper
bounds:

dp1p2 + dp1p3 + dp2p3 ≤ N

Message-flow-graph for
d = (2, 0, 1, 1, 1, 0) ∈ D:

Message-flow-graph for any
d ∈ D:

p1 p2 p3

dp1p2 dp2p3

dp1p3

No cycles!

1 2 32

1

1

1

2-cycles and 3-cycles!

1 2 3d12

d21

d23

d32

d13

d31

2-cycles and 3-cycles!

Optimal strategy should be able to ‘resolve’ cycles!
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Uplink-downlink Separability

Node 1 Node 2Channel

x1

x2y1

y2m1

m2m̂2

m̂1

Two-way channels are in general not separable

⇒ uplink and downlink have to be considered jointly

⇒ xi and yi are dependent

Node 1 Node 2

+

+

Tx 1

Tx 2Rx 1

Rx 2

x1

x2y1

y2

n1n1

n2n2

m1

m2m̂2

m̂1

Basic Gaussian two-way channel is separable

⇒ uplink and downlink can be considered separately

⇒ xi and yi are independent
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Channel Diagonalization

Definition (Channel diagonlization)

Transform an arbitrary MIMO channel matrix H to a diagonal matrix.

MIMO M ×N P2P channel can be diagonalized by zero-forcing (ZF)

M ≥ N : ZF pre-coding:

• Pseudo-inverse:
H† = HH [HHH ]−1

• H†H = I

Tx

Rx

x y
H†

uu

H†

N parallel SISO P2P channels!

M ≤ N : ZF post-coding:

• Pseudo-inverse:
H‡ = [HHH]−1HH

• HH‡ = I

Tx
Rx

x y
H‡

ỹỹ
H‡

M parallel SISO P2P channels!

DoF achievable by treating each sub-channel separately ⇒ Separability!
MAC and BC are also separable
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Outline

1 Motivation: From one-way to multi-way

2 The MIMO Y-channel: From single-antenna to multiple-antennas

3 Main result: From capacity to DoF

4 Insights and ingredients
Channel diagonalization: Separability of communication
structure
Alignment, Compute-and-forward
Transmission strategy(3-users)

5 Extensions and Conclusion
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Signal Alignment

Definition (Signal alignment)

Placing two signals x1 and x2 in signal space so that span(x1) = span(x2).

Two signals can be aligned by
pre-coding:
x1 = V1u1

x2 = V2u2

• V1, V2 arbitrary

• H1V1 = H2V2

Node 1

Node 2

Node 3

H1

H2

x1

x2

H1x1

H2x2

x1

x2

H1x1
H2x2
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Compute-forward

Definition (Compute-forward (CF))

Computing and forwarding a linear combination of two signals a1x1 + a2x2.

CF can be accomplished by
using lattice codes.

• Property: u1 and u2

lattice codes ⇒ u1 + u2

lattice code!

• x1 = V1u1,

x2 = V2u2,

H1V1 = H2V2 = [1, 1]T

(e.g.)

• receive
y3 = (u1 +u2)[1, 1]T +n

• compute u1 + u2 from
[1, 1]y3 = 2(u1+u2)+n′

0 1 2−1−2

u1u2 u1 + u2
xx x

Node 1

Node 2

Node 3

H1

H2

x1

x2

H1x1

H2x2
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Overview

Achievability of D is proved using:

Channel diagonalization:

MIMO
Y-channel

→
N SISO

Y-channels
(sub-channels)

U1

U3

R

U2

U1

U3

R

U2U1

U3

R

U2

Information exchange:

• Bi-directional: signal-alignment/compute-forward

• Cyclic: signal-alignment/compute-forward

• Uni-directional: decode-forward

Resource allocation: distribute sub-channels over users
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Channel Diagonalization

• a MIMO Y-channel
with M = N = 3

• actually looks like
this!

• Pre- and post-code
using the
Moore-Penrose
pseudo inverse

• Channel
Diagonalization ⇒ N
sub-channels

User 1

User 2

Relay User 3

Uplink

x1

x2

x3

H1H1

H2H2

H3H3

User 1

User 2

Relay

xr

User 3

Downlink

y1

y2

y3

D1D1

D2D2

D3D3
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Information transfer

Bi-directional:

• signal-alignment

• compute-forward

• exchanges 2 symbols

• requires 1 sub-channel
(up- and down-link)

• efficiency 2
DoF/dimension

User 1

User 2

Relay User 3

Uplink

u12

u21

0

u12+u21

User 1

User 2

Relay User 3

Downlink

u21

u12

0

u12+u21
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Information transfer

Cyclic:

• signal-alignment

• compute-forward

• exchanges 3 symbols

• requires 2 sub-channels
(up- and down-link)

• efficiency 3/2
DoF/dimension

User 1

User 2

Relay User 3

Uplink

u12

0

u23

u23

0

u31

u12+u23

u31+u23

User 1

User 2

Relay User 3

Downlink

u23

u31

u12

u31

u12

u23

u12+u23

u31+u23
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Information transfer

Uni-directional:

• decode-forward

• exchanges 1 symbols

• requires 1 sub-channel
(up- and down-link)

• efficiency 1
DoF/dimension

User 1

User 2

Relay User 3

Uplink

u12

0

0

u12

User 1

User 2

Relay User 3

Downlink

0

u12

0

u12
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Example

DoF tuple d = (d12, d13, d21, d23, d31, d32) = (2, 0, 1, 1, 1, 0), Y-channel with
3 = N ≤M

Uni-directional only:

• 5 sub-channels > N !

Bi-directional 2 symbols 1 sub-channel
Cyclic 3 symbols 2 sub-channels

Uni-directional 1 symbol 1 sub-channel

Bi-directional + uni-directional:

• bi-directional achieves db12 = db21 = 1 over 1 sub-channel

• residual DoF (1, 0, 0, 1, 1, 0)

• uni-directional needs 3 more sub-channels

• total number of sub-channels 4 > N !

Bi-directional + cyclic + uni-directional:

• bi-directional achieves db12 = db21 = 1 over 1 sub-channel

• residual DoF (1, 0, 0, 1, 1, 0)

• cyclic achieves dc12 = dc23 = dc31 = 1 over 2 sub-channels

• residual DoF (0, 0, 0, 0, 0, 0)

• total number of sub-channels 3 = N !
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Resource allocation

Consider a DoF tuple d = (d12, d13, d21, d23, d31, d32)

⇒ 2-cycles and 3-cycles!

Bi-directional:
1) set dbij = dbji = min{dij , dji}
2) requires dbij sub-channels
3) resolves 2-cycles
4) residual DoF d′ij = dij − dbij

1 2 3

d12

d21

d21

d23

d32

d32

d13

d13

d31

d31

Residual DoF tuple (e.g.) d′ = (d′12, 0, 0, d
′
23, d

′
31, 0) ⇒ 3-cycle!

Cyclic:

1) set dcij = dcjk = dcki = min{d′ij , d′jk, d′ki}
2) requires 2dcij sub-channels
3) resolves 3-cycles
4) residual DoF d′′ij = d′ij − dcij

Uni-directional:

1) set duij = d′′ij

2) requires duij sub-channels

d achieved!
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Outline

1 Motivation: From one-way to multi-way

2 The MIMO Y-channel: From single-antenna to multiple-antennas

3 Main result: From capacity to DoF

4 Insights and ingredients
Channel diagonalization: Separability of communication
structure
Alignment, Compute-and-forward
Transmission strategy(3-users)

5 Extensions and Conclusion
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K-user Case

For the K-user Y-channel with N ≤M :

• 2-cycles up to K-cycles,

• `-cycles resolved by an `-cyclic strategy

• exchanges ` symbols

• requires `− 1
dimensions

• efficiency `/(`− 1)

1 2 3 · · · K

• DoF region described by

K−1∑
i=1

K∑
j=i+1

dpipj ≤ N, ∀p

where p is a permutation of (1, 2, · · · ,K).
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Conclusion

• Studied the K-user MIMO Y-channel

• Combination of:

• Channel diagonalization
• Signal-alignment with compute-forward

• decode-forward

• DoF region characterized

• Cyclic strategy required joint encoding over multiple sub-channels:

• Downlink and uplink are seperable
• Subchannels are not decomposable (seperable)

Thank You
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Optimality

Total number of
dimensions required to
achieve d ∈ D:

Bi-directional 2 symbols 1 sub-channel
Cyclic 3 symbols 2 sub-channels

Uni-directional 1 symbol 1 sub-channel

Ns =

bi-directional︷ ︸︸ ︷
2∑

i=1

3∑
j=i+1

dbij +

cyclic︷ ︸︸ ︷
3∑

j=2

2dc1j +

uni-directional︷ ︸︸ ︷
3∑

i=1

3∑
j=1, j 6=i

duij

(duij = dij − dbij − dcij)

=
3∑

i=1

3∑
j=1, j 6=i

dij −
2∑

i=1

3∑
j=i+1

dbij −
3∑

j=2

dc1j

(dij + dji − dbij = max{dij , dji})

= max{d12, d21}+ max{d13, d31}+ max{d23, d32}︸ ︷︷ ︸
d12+d23+d31 e.g.⇒dc

13
=0, db

12
=d21

−dc12 − dc13

= d12 + d23 + d31 − dc12

(dc12 = d12 − db12 e.g.)

= db12 + d23 + d31

= d21 + d23 + d31

No cycles ⇒ Ns ≤ N ⇒ All d ∈ D are achievable
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Ns =

bi-directional︷ ︸︸ ︷
2∑

i=1

3∑
j=i+1

dbij +

cyclic︷ ︸︸ ︷
3∑

j=2

2dc1j +

uni-directional︷ ︸︸ ︷
3∑

i=1

3∑
j=1, j 6=i

duij (duij = dij − dbij − dcij)

=
3∑

i=1

3∑
j=1, j 6=i

dij −
2∑

i=1

3∑
j=i+1

dbij −
3∑

j=2

dc1j (dij + dji − dbij = max{dij , dji})

= max{d12, d21}+ max{d13, d31}+ max{d23, d32}︸ ︷︷ ︸
d12+d23+d31 e.g.⇒dc

13
=0, db

12
=d21

−dc12 − dc13

= d12 + d23 + d31 − dc12 (dc12 = d12 − db12 e.g.)

= db12 + d23 + d31

= d21 + d23 + d31

No cycles ⇒ Ns ≤ N ⇒ All d ∈ D are achievable
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Outer bound

Dec1 y1

Dec2 y2

Relay Dec3y3

m12, m13

m21, m23

m32, m31

D1D1

D2D2

D3D3

Consider any reliable scheme for the 4-user MIMO MRC
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Outer bound

Dec1 y1

Dec2 y2

Relay Dec3y3

m12, m13

m21, m23

m32, m31

D1D1

D2D2

D3D3

m21, m31

m12, m32

m13, m23

Users can decode their desired signals
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Outer bound

Dec1 y1

Dec2 y2

Relay Dec3y3

m12, m13

m21, m23

m32, m31

D1D1

D2D2

D3D3

m21, m31

m12, m32

m13, m23

m23, y2

Give m23 and y2 to user 1 as side info.
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Outer bound

Dec1 y1

Dec2 y2

Relay Dec3y3

m12, m13

m21, m23

m32, m31

D1D1

D2D2

D3D3

m21, m31

m12, m32

m13, m23

m23, y2

Now, user 1 has the info. available at user 2
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Outer bound

Dec1 y1

Dec2 y2

Relay Dec3y3

m12, m13

m21, m23

m32, m31

D1D1

D2D2

D3D3

m21, m31

m12, m32

m13, m23

m23, y2

m32

⇒ User 1 can decode m32
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Upper bound

User 1 can decode (m21,m31,m32) from (m12,m13,y1,

side info.︷ ︸︸ ︷
m23,y2)

Dec1
y1

y2
Relay

m12, m13, m23

D1D1

D2D2

m21, m31, m32

⇒ R21 +R31 +R32 ≤ I (xr;y1,y2) = I

(
xr;

[
D1

D2

]
xr +

[
z1

z2

])
P2P Channel

⇒ d21 + d31 + d32 ≤ rank

([
D1

D2

])
= N

Considering different combinations of users gives the desired outer bound

2∑
i=1

3∑
j=i+1

dpipj ≤ N, ∀p
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