

QUALCOMM CDMA TECHNOLOGIES

QUALCOMM CONFIDENTIAL AND PROPRIETARY

MIMO in (4G) cellular systems

August 2014

□ MIMO in cellular: myths & truths

MIMO techniques across 3GPP releases

MIMO receivers: design & performance considerations

Antenna management techniques

Recent developments

Lessons learned

MIMO in cellular: myths & truths (1/2)

 \Box 4RX layout on a smartphone: corr \approx **0.2** / \approx **0.6** in high / low bands

700MHz (top), 800-900MHz (bottom), 1.7-6GHz (both)

MIMO in cellular: myths & truths (2/2)

Myth: operating CINRs too low to enable system level MIMO gains

□ 30% UEs below OdB, 60% UEs below 5dB, 90% UEs below 20dB

MIMO gain	Equal grade of service			Equal bandwidth		
over SIMO	2 x 2	2 x 4	4 x 4	2 x 2	2 x 4	4 x 4
ITU	1%	20%	18%	9%	36%	47%
SCM	-1%	5%	5%	5%	22%	32%

Truth: NWs operate at fractional loading resulting in high CINRs

Qualcomm Proprietary

lte

LTE DL MIMO transmission modes

LTE Rel	тм	Description	Comments	
8	1	Single antenna port aka SIMO	Applicable to cells configured w/ one CRS port, fairly uncommon across deployments	
8	2	Transmit diversity	SFBC for 2 CRS ports, FSTD+SFBC for 4 CRS ports, rank 1 fallback for open/closed loop MIMO, used for DL control	
8	3	Open loop spatial multiplexing	Large delay CDD (LD-CDD): (still) predominant MIMO TX mode across LTE NWs	DEMOD: CRS CSF: CRS
8	4	Closed loop spatial multiplexing	Closed loop pre-coding, deployed initially by ALU only, getting increasing traction, increasing interest w/ 4 CRS	
8	5	Multi-user MIMO	Poorly defined in terms of DEMOD (no reliable means of MU- MIMO detection) and CSF, not used in practice	
8	6	Closed loop rank 1 precoding	Functionally equivalent to TM4 w/ codebook restriction to rank 1, not seen in practical deployments	
8	7	Single stream beamforming	Mainly driven by 8TX TD-LTE deployments to support reciprocity based beamforming, no dedicated CSF	DEMOD: UE-RS
9	8	Dual stream beamforming	Extension of TM7 to two spatial streams, same purpose, somewhat better yet crippled CSF support	CSF: CRS
10	9	UE-RS based SU-/MU-MIMO	Provisions for DEMOD & CSF w/ increased number of TX antennas, up to 8 layers, introduction of dedicated RS for feedback (CSI-RS)	DEMOD: UE-RS
11	10	TM9 enhancements to support inter-cell coordination (CoMP)	Concepts of interference measurement sets and CSI processes, notions of RS co-location to handle timing / frequency and long term channel parameters	CSF: CSI-RS

lte.

LTE numerology and reference signals

LTE radio frame numerology

Common reference signals (CRS)

Lte

CRS based MIMO transmission (1/2)

Concept of transport block (TB) aka codeword to layer mapping

w/maximum **2TB**s regardless of the number of layers

Open loop spatial multiplexing (LD-SDD): alternating precoders (4CRS) w/ permutation of precoder vectors across REs

Number of layers v	U	D(i)			
1	[1]	[1]			
2	$\begin{bmatrix} 1 & 1 \\ 1 & e^{-j2\pi/2} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{-j2\pi i/2} \end{bmatrix}$			
3	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} \\ 1 & e^{-j4\pi/3} & e^{-j8\pi/3} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{-j2\pi i/3} & 0 \\ 0 & 0 & e^{-j4\pi i/3} \end{bmatrix}$			
4	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & e^{-j2\pi/4} & e^{-j4\pi/4} & e^{-j6\pi/4} \\ 1 & e^{-j4\pi/4} & e^{-j8\pi/4} & e^{-j12\pi/4} \\ 1 & e^{-j6\pi/4} & e^{-j12\pi/4} & e^{-j18\pi/4} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-j2\pi i/4} & 0 & 0 \\ 0 & 0 & e^{-j4\pi i/4} & 0 \\ 0 & 0 & 0 & e^{-j6\pi i/4} \end{bmatrix}$			

□ symmetric stream ⇒ virtual antenna mapping

designed to operate w/ common CQI across streams

* simplest & most prevalent MIMO transmission mode to date

CRS based MIMO transmission (2/2)

 $y = \boldsymbol{W}(i) x$

2CRS: 4 PMIs @ rank 1, 2 PMIs @ rank 2 **4CRS:** 16 PMIs @ rank 1, 2

Codebook	Number of layers v		
maex	1	2	
0	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
1	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	
2	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\j\end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$	
3	$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-j\end{bmatrix}$	-	

differentiated CQI values across streams: enabled SIC receivers

explicit wideband PMI or implicit sub-band PMI

 \star less common but gaining traction, renewed interest w/ 4 CRS

Closed loop rank-1 precoding: special case of closed loop spatial multiplexing w/ rank 1 restriction

□ functionally achievable w/ TM4, not much practical value

Multi-user MIMO: equivalent to closed loop rank-1 precoding w/ halved transmit power assumption built into UE feedback

Icks practical means to detect/handle MU interference, not used

UE-RS based MIMO transmission

Single stream beamforming: channel reciprocity (TDD) to achieve "transparent" beamforming, tailored to large # antennas
 UE specific RS (UE-RS) through same precoding as data
 CSF from transmit diversity: CSF ⇔ DEMOD mismatch
 relies on NW outer loop to recover beamforming gains
 China (8TX) & limited deployments in Japan

Dual stream beamforming: extends single stream beamforming
 transparent MU-MIMO w/ detection & mitigation at the UE
 CSF inherited from CRS modes: CSF DEMOD mismatch
 requires UL antenna switching feature to enable MIMO
 Rel-8 TxDiv feature "mandated" along w/ TM8 support
 recent deployments, predominantly in China

CSF for legacy DL MIMO

UE feedback measurements based on CRS

constraints on NW spatial processing & mismatch for UE-RS modes

Periodic feedback sent on UL control channel (PUCCH)

tradeoff between "constant" overhead & detail/accuracy

widely used across NWs

Periodic (PUCCH) only

Aperiodic feedback sent as scheduled UL upon NW request

on-demand feedback w/ DL scheduling activity

allowing for greater feedback detail/accuracy

PMI feedback type					
ck		No	Wideband PMI	Subband PMI	
	Wideband CQI	Mode 1-0	Mode 1-1	Mode 1-2	
a lba		TM 1,2,3,7	TM 4,5,6	TM 4,6	
ll feed type	UE selected	Mode 2-0	Mode 2-1	Mode 2-2	
	sub-band CQI	TM 1,2,3,7	TM 4,5,6	TM 4,6	
8	NW selected	Mode 3-0	Mode 3-1	NI / A	
	sub-band CQI	TM 1,2,3,7	TM 4,5,6	N/A	

Sub-band scheduling deployed w/ NW selected feedback

Aperiodic (PUSCH) only

Periodic (PUCCH) & aperiodic (PUSCH)

Advanced DL MIMO design principles

- Fundamental change in RS design & use principles
 - □ TX antenna dimension ≠ spatial multiplexing dimension
 - \square CSI estimation accuracy \neq demodulation estimation accuracy
 - enable NW spatial processing "transparent" to the UE
 - * convergence towards UE-RS based demodulation design
 - * concept of "dedicated" CSI-RS in Rel-10 (TM9)
- Precoding framework to accommodate "practical" configurations
 hierarchical codebooks for commercial 8TX configurations
 separation into wideband & sub-band spatial feedback
- Scaling to higher MIMO order & SU-MIMO support

primarily extension of UE-RS design

Towards a better inter-cell coordination

* notions of interference measurement resources (IMR) & CSI process

DL CoMP framework

CoMP CSI enhancements

CSI feedback related to various/multiple transmission points

- □ introduce the notion of interference hypotheses
- CoMP CSI enhancements

□ virtual cell ID & quasi-colocation of reference signals

Advanced DL MIMO reference signals

UE-RS to accommodate up to 8 MIMO streams

unified UE-RS pattern structure scalable w/ MIMO rank

high rank ports added through time domain CDM

trade overhead for less tolerance w.r.t. mobility

CSI-RS to accommodate up to 8 TX ports

□ configurable duty cycle: 5,10,20,40,80ms

D 1 in 12 tones: \approx 5us delay spread resolution

🚫 : CDM group 1 : CDM group 2

$S = egin{bmatrix} +1 & +1 & +1 & +1 \ +1 & -1 & +1 & -1 \ +1 & +1 & -1 & -1 \ +1 & -1 & -1 & +1 \ \end{bmatrix} = [a \ b \ c \ a \ b \ c \ a \ b \ c \ a \ b \ c \ a \ b \ c \ a \ a$
--

CSI process: a combination of CSI-RS and IMR

□ IMRs used to measure interference under different (CoMP) hypotheses

mix & match of TX channel & interference scenarios in UE reports

Qualcomm Proprietary

Codebook design considerations

- Dual codebook structure to match antenna correlation patterns
 relatively high correlation between co-polarized TX antennas
 relatively low correlation between x-polarized antenna sets
 scattering mostly around UE => low RX correlation ((9))
- 8 CSI-RS precoders follow Kronecker structure
 W₁ grid of beams within co-pol antennas: 4x1 DFT vectors
 W₂ 2x2 co-phasing matrices following legacy design principle
 extended to 4TX in Rel-12
- Feedback overhead reduction
 - \square W₁ : single reported value across the entire BW
 - □ W₂ : sub-band PMI reporting enabled

UE

described by W₂

Grid of beams for 4Tx Linear Array described by W₁

Uncorrelated across polarizations described by W₂

UL MIMO in LTE

Traffic: closed loop spatial multiplexing w/ up to four streams

- addition of CDM across DM-RS symbols to increase RS dimension
- precoding codebook design following DL design principles
 - addition of "hot-bit" precoders to enable TX antenna selection
 - constraints to preserve SC-FDMA waveform
- Control: open loop transmit diversity
 - orthogonal resources allocated for two transmit ports
 - antenna virtualization for >2 transmit ports
- To date no commercial deployments supporting UL MIMO

DL (MIMO) receiver design

- Early MIMO performance specifications assume LMMSE
 competitive analysis focused on low/moderate mobility
 MIMO focus: single cell, low correlation, moderate CINR (≤30dB)
- Interference nulling receivers
 - multi-cell evaluation framework defined in RAN4
 - **Rel-11**: interference rejection combining (LMMSE-IRC) RX category

Growing interest in MIMO performance under adverse conditions

- competitive analysis looks at wide range of mobility / delay spread / antenna correlation: EPA/EVA5L/H, EVA/ETU70L/H, ETU300L
 - delays spreads up to 5us, TX & RX correlation up to 0.9

D attention to **30-40dB** CINR raising the bar for RF: I/Q mismatch, IPN

Advanced UE categories further tighten performance requirements
 Rel-12: reduced complexity ML (R-ML) receiver as baseline
 performance requirements based on 4RX chain availability upcoming

RX antenna management techniques

- Antenna selection attracts attention since early days of MIMO
 - cost & power effective way to improve performance & coverage
 - \blacksquare ... however little traction in WWAN industry for ≈ 10 years
 - real estate & layout considerations don't appeal to OEMs
 - cost & insertion loss of extra components
- Feature evolution of portable devices antenna sharing
 - □ Wi-Fi integration ⇒ cross-tech antenna sharing
 - LTA carrier aggregation (CA) requires additional RX chains: facilitates antenna selection or combining
- Cross-tech antenna sharing framework
 - system-wide optimization of antenna assignment
 - □ one tech only active (LTE or WiFi),
 - □ different QoS (VoLTE w/ data on WiFi)
 - LTE backhaul (MiFi)

RX antenna selection field results

- Throughput analysis w/ 2TX/cell and up to 4RX at the UE two cross-polarized TX antennas at eNodeB @ 2.17GHz □ smart-phone & laptop form factors, no hand blocking mix of indoor / outdoor measurements Gains w/ adaptive 2 out of 4 selection \Box instantaneous: $\approx 15\%$ median & $\approx 30\%$ (10%) tail □ 100ms delay: ≈15% median & ≈20% (10%) tail □ 500ms delay: ≈12% median & ≈20% (10%) tail fixing primary antenna retains most of the gain Selection or combining?
 - **D** either option is available for CA capable UEs
 - UE CA capability will often exceeds the need in most scenarios
 - combining across multiple RX chains incurs substantial power penalty
 - * smart antenna selection & receiver switching algorithms

Currently 2TX deployments dominate worldwide
 TDD: 8TX antennas in China, yet configured w/ 2CRS
 FDD: 4CRS trial NW in Europe (TMO), SKT pioneered commercial 4CRS

 major commercial rollout of 4TX/4CRS NWs expected later this year

 What to expect w/ 4CRS?
 UE-RS modes are designed to better scale w/ number of TX
 however TM9(10) are not yet commercially available
 4 CRS deployments ... long term of transitional?

Scenario	Test	2x2	4x2
Near cell	DL FTP (Mbps)	32.7	33.4
10MHz	UL FTP (Mbps)	10.1	10.1
Cell edge	DL FTP (Mbps)	3.59	6.63
10MHz	UL FTP (Mbps)	0.21	0.9

Higher order spatial multiplexing ... yet to be seen

Network assisted interference cancellation

Rel-12: signaling framework to convey neighbor cell parameters to UEs in order to facilitate RS and/or data interference cancellation

neighbor (virtual) cell IDs, CRS & MBSFN configuration, TM restriction

Rel-13: consider extending the same for (intra-cell) MU-MIMO

Higher order modulation schemes

□ 256QAM coming in Rel-12

Non-orthogonal multiple access (NOMA)

advanced MIMO transmission techniques e.g. superposition / DPC

MMW MIMO aka massive MIMO

4G MIMO: lessons learned (1/2)

- Avoid/minimize pilot pollution in a broadband wireless design
 - D broadband data networks are partially loaded
 - wideband/continuous/scattered pilots generate interference floor
 - □ high cost of pilot interference mitigation
 - makes heterogeneous deployments intractable
 - pilot collisions undermines utility of channel feedback
 - * much RAN4 work over past few years focused on "mitigating" the impact of common pilots (CRS) designed in Rel-8
- Pay attention to channel state feedback design
 - □ data networks tend to operate in low PHY BLER regime
 - accurate feedback is critical to highlight (advanced) receiver gains
 - inaccurate CQI partly mitigated by NW rate control loops ... much harder to fix incorrect rank

4G MIMO: lessons learned (2/2)

- Design MAC w/ practical traffic behavior in mind
 - cellular systems have been mostly designed/evaluated under "full buffer" model
 - better performance can be achieved w/ advanced coordination techniques

