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Radio-Frequency Coupling Happens

S12=51#0
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Becoming Increasingly Important

Where it can happen:

o Compact devices

@ Wearables

e Massive MIMO

@ At all frequencies, WiFi, LTE, 5G technologies
Take-aways from this talk:

@ Matching circuits can compensate

@ Envelope correlation can still be made zero

@ System bandwidth and capacity can still be high

°

Don't over-engineer antennas to eliminate coupling
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Matching Network

I'[ Two-port ! | |
Z mv;?ct?izg Z, ! Z, |
— | =
| L_network | ! I
___________ : (P
~ Source Load N With matchin?g network

Without matching network, reflection coefficient is

4L -2
_ZL+ZO

With matching network, reflection coefficient is zero.
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Matching Multiple Loads

Multiple two-port networks?

Two-port J

Vsl . . . Nloads

Z Y
Two-port

sN

This only works if the loads are “uncoupled”. Power from one chain is still
coupled into another.
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Decoupling Network

@ Matches uncoupled sources to coupled
loads

@ Transforms the coupled impedance of
the loads into the uncoupled
characteristic impedance of the sources

@ Theory for decoupling
network design

@ Theory for decoupling

@ Ensures no signal entering one port is :
5 & P network bandwidth

reflected out another

e analysis
Z || Two-port Z,
1| hetwork —! @ Focus on:
,,,,,,,,,, 1
= = — Simplicity
, | i — High bandwidth
. 1] 2npon N coupled — Implementation with
20 1 e loads lossy components
— —_ o
|
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Example for Two Loads

coupling:

1.09n 1.61 nH
M .
=1 1 3
\ 2.74 pF
(1.39nH§ Z,=50Q
H 2.4 GHz
2.1|?pF
1 4
10.03 nH

§ 81pF]

Observations:

@ Coupled matching network

@ Asymmetric

@ Minimum complexity

D(

o | >

]
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Arbitrary Coupled Loads

d,
<
»
b,
: N-port
loads
Sy
Specified by a scattering matrix (S-matrix)
52 = SLBZ

Non-zero off-diagonal entries indicate coupling.
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Definition of Decoupling Network

Z al a2
_> 4_
2N-port
— -po g
b 3| matching |= 8 2
— - £| network xE N-port
= = > S |
=1 |:S11 S12:| §_§ . oads
/2]
A S21 S22 e
= S, S,

@ Designed for a given scattering matrix of loads S;

@ Permits no reflected energy from loads
@ Combined scattering matrix of network+loads S,y =0
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Effect of Network In a MIMO System

Channel Model

@ N transmit antennas and M receive
antennas

@ Mutual coupling in N transmit
antennas

@ Uplink from mobile station to base =
station is in rich scatter environment %

@ M x N channel 1
t = - - - =
CH- AR IR PP By
N _ Fs-Fo IRP o FoFu
@ H: an M x N matrix ] ] ] dQ
whose elements are i.i.d. oL L : N )
CN(0,1) Fy-Fu Fy-F2o-oo |Fy
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Capacity in MIMO System

The Channel Correlation Matrix

@ 0 < R < | in positive-definite sense Zy —p -

. . . - —

@ R is decided by the matching network v, b ol oon 225
gl 2n-bort 135
@ A decoupling network decorrelates the = 0 23T b3
. 173 a

channel by making R =/

MAE

Channel Capacity

Capacity of the channel is

1 1. -
C, = E[log det(/ + ;HHH)] = Ellog det(/ + — HRH")]
(o
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Capacity as a Function of Matching Network

Decoupling Networks

‘Optimal two-port match
Decoupling match

| rowsoman ‘ @ When the decoupling network
: is used, the capacity is
maximized
@ There is a 7 dB gap between
the decoupling network and
two-port matching networks

Capacity (bits/transmission)

}47!\)\?'4»‘
RS S
s

5 10
SNR (dB)

o Effectively eliminates the mutual coupling as seen by source
@ Decorrelates the channel
@ Maximizes the radiated power and capacity
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Connection Between Envelope Correlation and Antenna
Coupling

Envelope correlation

@ Defined as the cross-correlation of the antenna patterns integrated
over all space

@ Measure of signal correlation seen at baseband

@ Measure of antenna diversity

15

o __ @ What is effect
o Closely spaced ! va of matching
antenna pairs : network on
I
|

A
A A 2 e High coupling envelope

________ correlation?
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Envelope Correlation of Antennas

Envelope Correlation

Defined as

o = 2
e Fr- F5 49
p=-——= -
Jurn |[FL2dQ [, |Fo[2dD2

@ The envelope correlation is related to the S-parameters as

_ 551512 + 55152/
P =150 = 1S P) (T — [S12P — [522)
o If the antennas are matched, S;1 = Sy» = 0, then the envelope
correlation is zero

@ If the antennas are decoupled, S15 = Sp1 = 0, then the envelope
correlation is also zero
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Mathematical Description of Decoupling Network

Partitioned 2N x 2N S-matrix:

5:[511 512]

S1 S»
Reciprocal: S =ST
Lossless: SHS =1

Matches loads at output: Sy = S}’
Decouples: S+ 512SL(/ — 5[’5[_)_1521 =0

Constraints leave N2 degrees of freedom in S, so S is not unique.
Open question: Which is the best one?
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Properties of Decoupling Networks

Decoupling Network

Decoupling network is lossless, reciprocal,
2N-port network S that satisfies S,y = 0,
where = 3

4

fire

sdljs

2N-port
matching
network

SH S\z
S5 Sz

| N-port
°| loads

spod Indino

spod yndu|
NZ~1+N

=

Sim = S11+ S12S1(1 — $2251) 71 Sn

‘\}_@

T

o—

Non-uniqueness of Decoupling Networks

@ Set of decoupling networks for S;

S :={S e C?V*2N . Su=-W[UnVT

Sy —SI.SHS — 1, ST — 5} Si2= V(I - )z Uf!

@ S has N? degrees of freedom So1 = Uj(I - /\%)% v’
o Let SVD S, = UL/\LVLH. Unitary T — VLALU[I

matrix V is used to represents N? DoF

v
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Properties of Decoupling Networks

@ The admittance matrix and S-matrix are related by Cayley transform
Y = Yy(I - S)(I1+5)71

Lemma

With S, = U AL VLH, then Y = Yu Yo represents the admittance
Y1 Yo

of a decoupling network for S; if and only if it has the form
Yii = Yo(V*AT + VAP (v AT — vaH)-t
Yi2 = Yo = =2Yo(AVH — ArvT)-1
Yoy = Yo(BVH + B*VT)(AVH — AxvT)~L
for some unitary matrix V, where
A= Ul = N])”

B =U(l = Nf)~

+ V(I = AD)TEAL
— Vil = AD)TEAL

SIS NI
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Network Synthesis From Admittance Matrix

Generalized N-Network

/’o X

@ Generalized 2N-port [1-network:

@ [l-network: N
Yy — 2;21 Cij —C12 s —C1(2N)

2N
ci1+cC2  —C -2 Yo @i —C(2N)
—C12 C12 + €22 : : : :

—cion) G0N D G
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Network Complexity

Let I(Y) be the number of nonzero components in the realization of
Y

For general dense Y, I(Y) = 2N? + N

We design simplest decoupling network by solving

Y* = arg min I(Y)
Y:(Yol—-Y)(Yol4Y) 1S

o S has N? degrees of freedom, so there is a lower bound I(Y*) > I*
¥ =2N>+ N — N> = N>+ N.

A design method is introduced to achieve this lower bound
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Design Method for Simple Decoupling Networks

Minimum-complexity method

Follow the steps below:

@ Calculate N x N complex matrices P and @ using:
P=(I-SSMH™" Q=sS(-55""
and use pj;, gjj to denote the jjth element of P and Q.
@ If N > 3, solve the following quadratic equation for real 6;:
dp tan? 01+ drtanfy +d3 =0
where
d1="21(0n1YNn2 — YN1ON2) — 021 (Snin — YN1ON2)
do=a21(On1YN2 — YN1ON2) — O21(Brniane — anifnz)
+721(Bnivne — anidnz) — Bai(dnianz — YnviBn2)
d3=a21(Bn1vn2 — anidn2) — Bar(Bnianz — aniBr2)
ajj = Re{pj + g}, B = Im{—pj + qi},
i = Im{pj + qij}, 6 = Re{p; — q;}.
If a real solution for 81 does not exist or N = 2, set 6; = /2.
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Minimum Complexity Method

Method (cont'd)
© Calculate real 6o,...,0y using
_ |pi1| cos(Zpi1 — 01) + |qgi1| cos(Z£qi1 — 61)

tand; = - -
|pi1| sin(£pir — 01) — |gi1| sin(£gin — 01)
and let © = diag(fy,---,60n) be an N x N diagonal matrix.

@ Use the Cholesky factorization to find an N x N real lower triangular
matrix L. that is non-negative along the diagonal and satisfies
LcL] =2Re{e/®Pe®} + 2Re{e /© Qe /®} — |

Y YP
O Let V' — [ non

Y31 Y3 ' ' _
Y, = jYoLZ'Re{2Re{e/®P} + 2Re{e®Q} — e/} (csc ©)L,
Yih = ()" = _jYOLZ— csc©
Y35 = jYocot©

@ Realize the lN-network circuit using Y*

} where
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Theorem for Minimum Complexity Method

rx x X X x| x 0 0 0 0 1
X X X X x| 0 x X X ox
X X X x| 0 0 x X
2
><>-<>< x><600 ><>.< 3
X X X X x| 0 0 0 0 X
X 0 0 0O 0| x 0 O 0 0
0o x 0 0O o]0 x O 0 0
0 x X 0 0|0 0 x 0o 0 N-1
: : : N,
0 x x x 0|0 o o0 x 0
L O * X X X 0 0 0 0 X
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Symmetric Simplification Method

@ Symmetric loads have the form

pr+ &L &L &L

&L pr+& e &L

SL= : : . :
§.L &L ceop &L

@ A realization of decoupling network with linear number of
components?
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Symmetric Simplification Method

Symmetric Simplification Method

Follow the steps below:
@ Calculate p1, &1, p2, & as follows:
1

M1 = T

H=— P&l e ELtNE?
1 (A~ ) (Np€f +Nug &+ p [P+N2[EL[2-1)
p2 = pp1
& = pp& + & + NEFE
/& —arccos(— Re{51})
@ Compute real 6; = 5 ]
© Let
i1 = 2Re{e” /91u1+e_161p,2} cos 01
2RefeJ01¢ +e Jél&
611 : 5|n161 =
H12 = Ho1 = — V/2Re{pn+&+e 201 (uat6) -1
- 7 sin 601
22 = cot Oy

Then realize the network using
the components
c = —jYoNEn
e = jYo(pa1 + Néir + pi2)
e = —jYop12
ca = jYo(p12 + p22)

The realized network has only
4N components

4
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Paulraj's 70th!

August 1, 2014 27 / 37



Other Design Methods

Other Design Methods that Selectively Eliminate Components
//

e Figures (a), (b) and (c) show three other topologies that may be
derived

@ All three methods are “’suboptimal”, since they require N more
components than Minimum-Complexity Method

e They may have other advantages (such as high bandwidth)
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Overview

© Where Work is Needed
@ High-Bandwidth Decoupling Network Design
@ Theoretical Bounds on Bandwidth
@ Lossy Matching Networks
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Definition of Bandwidth

@ Bandwidth of a single-port matched load is the frequency range for
which less than 4% power is reflected

Power Reflection Ratio

The power reflection ratio r in the RF , @ a,
system is the ratio between the expected —= e ==
reflected power and the expected incident " 3 ?Z:f:'li?f 222 | e
power R EER TS
THL = = 4 S5 8 ¥
. Etl’{bf’bl} _ ]Etr{af’S[’MSLMal} _ lHSLan Z r { } r
Eer{373:} Etr{3/3:} =il \S \S

Bandwidth
The bandwidth of the N matched loads is the frequency range that
r < 0.04 in the vicinity of the design frequency fy.

fow = max{fy — fi : i < fy < o, r(£) < 0.04,¥A < f < f}
where fi, f» are lower and upper cutoff frequency, respectively.

| A

30 / 37
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Bandwidth Analysis of Decoupling Networks

@ The admittance of the decoupling network at frequency f = fy + Af
1S Y(f) =Y + Yo(Af) = Y + YFAf

@ When the decoupling network is connected to the loads, the first
order r and bandwidth are

N y 1P
r = W [ I VA ] Yf |: A*VT :| -
0.8vV'N
o~ 88 = ,
0w e ],

® When [l-network is used
|yU| I %]
Vel |0, vl + Dokt ki [Yik| =
@ Optimization problem
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High-Bandwidth Decoupling Network Design

+1[32.06 pF T
[9.20 pF i Gy
1

2.24 nH
14 |29.66 pF _ o
3.46 pF o
14.26 pF 2 CY
5 |3.96 pF
3.13 pF. Cs)
5.41 pF G B
] b 4 ppes
Minimum Complexity High Bandwidth
v
S ‘ ] o
18 \\ \ Method 4
@ High Bandwidth Method has three times the .| \ | /
bandwidth of Minimum-Complexity Method
@ What is the best we can do? oo
. . 56 \
@ Increase the bandwidth by cascading L O
multi-port networks? : N/
0.96 0.97 0.98 1.03 1.04

0.99 101 102
Frequency/Center frequency (i,
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Theoretical Bounds on Bandwidth

Bode-Fano Bound

Two-port

— matching
network
C R
() l

o Well-known Bode-Fano result for an RC load: Theoretical limit on

bandwidth - 1
s
In df < —
/o IF(F)l RC

@ Find a high-dimensional version of the Bode-Fano bound?
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Lossy Matching Networks

—>
-~
: SRR
@ For lossy matching networks, the total T . L e

power delivered to the loads matters . r z{”}
L

iire

| N-port
loads

NZ~1+N
suod indino

2

Sy S

L

Definition for Power Delivery Ratio

The power delivery ratio d is the ratio between the expected power
delivered to the loads and the expected incident power

Etr{b} b, — 353 1 _ _
{Ez’cr{gHs}z 25 Ntr{S{{(l = 5225[_) H(/ = 5[’5[_)(/ = 5225[_) 1521}

d =

o Find the decoupling network that is least sensitive to the resistive
losses?

@ Design lossy matching network that maximizes d?
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Overview

@ Summary
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@ What we showed:
— Systematic design of decoupling networks using N2 + N components,
the minimum possible

— Decoupling networks realization using linear number of components for
special loads

— High-bandwidth designs (that are not minimum complexity)
@ Rich area for future work:

— What is best we can do in bandwidth?

— How do we handle lossy components?

— How do we layout complicated decoupling networks?

— What load properties lead to linear-in-N complexity networks?
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