How to Handle Antenna Coupling in MIMO Systems

B. Hochwald, D. Nie and E. Stauffer

University of Notre Dame

bhochwald@nd.edu

August 1, 2014

Overview

1 Background

- Introduction to Coupling and Matching
- Decoupling Multiple Antennas

2 Systematic Design of Decoupling Networks

- Properties of Decoupling Networks
- Design Methods for Simple Decoupling Networks
- Other Design Methods

3 Where Work is Needed

- High-Bandwidth Decoupling Network Design
- Theoretical Bounds on Bandwidth
- Lossy Matching Networks

Summary

Overview

Background

- Introduction to Coupling and Matching
- Decoupling Multiple Antennas

2 Systematic Design of Decoupling Networks

- Properties of Decoupling Networks
- Design Methods for Simple Decoupling Networks
- Other Design Methods

Where Work is Needed

- High-Bandwidth Decoupling Network Design
- Theoretical Bounds on Bandwidth
- Lossy Matching Networks

Summary

Radio-Frequency Coupling Happens

$$S_{12} = S_{21} \neq 0$$

Where it can happen:

- Compact devices
- Wearables
- Massive MIMO
- At all frequencies, WiFi, LTE, 5G technologies

Take-aways from this talk:

- Matching circuits can compensate
- Envelope correlation can still be made zero
- System bandwidth and capacity can still be high
- Don't over-engineer antennas to eliminate coupling

Matching Network

Without matching network, reflection coefficient is

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$

With matching network, reflection coefficient is zero.

Matching Multiple Loads

Multiple two-port networks?

This only works if the loads are "uncoupled". Power from one chain is still coupled into another.

Decoupling Network

- Matches uncoupled sources to coupled loads
- Transforms the coupled impedance of the loads into the uncoupled characteristic impedance of the sources
- Ensures no signal entering one port is reflected out another

Needed:

- Theory for decoupling network design
- Theory for decoupling network bandwidth analysis
- Focus on:
 - Simplicity
 - High bandwidth
 - Implementation with lossy components

Example for Two Loads

- Coupled matching network
- Asymmetric
- Minimum complexity

Arbitrary Coupled Loads

Non-zero off-diagonal entries indicate coupling.

Definition of Decoupling Network

- Designed for a given scattering matrix of loads S_L
- Permits no reflected energy from loads
- Combined scattering matrix of network+loads $S_{LM} = 0$

Effect of Network In a MIMO System

Channel Model

- *N* transmit antennas and *M* receive antennas
- Mutual coupling in *N* transmit antennas
- Uplink from mobile station to base station is in rich scatter environment

- $M \times N$ channel $\vec{y} = H\vec{x} + \vec{w}$
- Channel matrix $H = \tilde{H} R^{1/2}$
- \tilde{H} : an $M \times N$ matrix whose elements are i.i.d. $\mathcal{CN}(0,1)$

$$R = \frac{1}{2\eta} \int_{4\pi} \times \left[\begin{array}{cccc} |\vec{F}_{1}|^{2} & \vec{F}_{1}^{*} \cdot \vec{F}_{2} & \cdots & \vec{F}_{1}^{*} \cdot \vec{F}_{N} \\ \vec{F}_{2}^{*} \cdot \vec{F}_{1} & |\vec{F}_{2}|^{2} & \cdots & \vec{F}_{2}^{*} \cdot \vec{F}_{N} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{F}_{N}^{*} \cdot \vec{F}_{1} & \vec{F}_{N}^{*} \cdot \vec{F}_{2} & \cdots & |\vec{F}_{N}|^{2} \end{array} \right] d\Omega$$

The Channel Correlation Matrix

- $0 \le R \le I$ in positive-definite sense
- R is decided by the matching network
- A decoupling network decorrelates the channel by making *R* = *I*

Channel Capacity

Capacity of the channel is

$$C_{p} = \mathbb{E}[\log \det(I + rac{1}{\sigma^{2}}HH^{H})] = \mathbb{E}[\log \det(I + rac{1}{\sigma^{2}} ilde{H}R ilde{H}^{H})]$$

Capacity as a Function of Matching Network

$\rightarrow \frac{\lambda}{10}$ Maximum nower mate 12

Decoupling Networks

- When the decoupling network is used, the capacity is maximized
- There is a 7 dB gap between the decoupling network and two-port matching networks
- Effectively eliminates the mutual coupling as seen by source
- Decorrelates the channel
- Maximizes the radiated power and capacity

SNR (dB)

Connection Between Envelope Correlation and Antenna Coupling

Envelope correlation

- Defined as the cross-correlation of the antenna patterns integrated over all space
- Measure of signal correlation seen at baseband
- Measure of antenna diversity

 What is effect of matching network on envelope correlation?

Envelope Correlation

Defined as

$$\rho = \frac{\left|\int_{4\pi} \vec{F}_1 \cdot \vec{F}_2^* d\Omega\right|^2}{\int_{4\pi} |\vec{F}_1|^2 d\Omega \int_{4\pi} |\vec{F}_2|^2 d\Omega}$$

• The envelope correlation is related to the S-parameters as

$$\rho = \frac{|S_{11}^* S_{12} + S_{21}^* S_{22}|^2}{(1 - |S_{11}|^2 - |S_{21}|^2)(1 - |S_{12}|^2 - |S_{22}|^2)}$$

- If the antennas are matched, $S_{11} = S_{22} = 0$, then the envelope correlation is zero
- If the antennas are decoupled, $S_{12} = S_{21} = 0$, then the envelope correlation is also zero

• Partitioned $2N \times 2N$ S-matrix:

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ S_{21} & S_{22} \end{array} \right]$$

- Reciprocal: $S = S^T$
- Lossless: $S^H S = I$
- Matches loads at output: $S_{22} = S_L^H$
- Decouples: $S_{11} + S_{12}S_L(I S_L^H S_L)^{-1}S_{21} = 0$

Constraints leave N^2 degrees of freedom in *S*, so *S* is not unique. **Open question:** Which is the best one?

Overview

Background

- Introduction to Coupling and Matching
- Decoupling Multiple Antennas

2 Systematic Design of Decoupling Networks

- Properties of Decoupling Networks
- Design Methods for Simple Decoupling Networks
- Other Design Methods

Where Work is Needed

- High-Bandwidth Decoupling Network Design
- Theoretical Bounds on Bandwidth
- Lossy Matching Networks

Summary

Properties of Decoupling Networks

Decoupling Network

Decoupling network is lossless, reciprocal, 2*N*-port network *S* that satisfies $S_{LM} = 0$, where

$$S_{LM} = S_{11} + S_{12}S_L(I - S_{22}S_L)^{-1}S_{21}$$

Non-uniqueness of Decoupling Networks

Set of decoupling networks for S_L S :={S ∈ C^{2N×2N} : S₂₂ = S_L^H, S^HS = I, S^T = S}
S has N² degrees of freedom
Let SVD S_L = U_LΛ_LV_L^H. Unitary matrix V is used to represents N² DoF

$$S_{11} = -VV_{L}^{H}U_{L}^{*}\Lambda_{L}V^{T}$$

$$S_{12} = V(I - \Lambda_{L}^{2})^{\frac{1}{2}}U_{L}^{H}$$

$$S_{21} = U_{L}^{*}(I - \Lambda_{L}^{2})^{\frac{1}{2}}V^{T}$$

$$S_{22} = V_{L}\Lambda_{L}U_{L}^{H}$$

Properties of Decoupling Networks

• The admittance matrix and S-matrix are related by Cayley transform $Y = Y_0 (I-S) (I+S)^{-1}$

Lemma

With $S_L = U_L \Lambda_L V_L^H$, then $Y = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$ represents the admittance of a decoupling network for S_I if and only if it has the form $Y_{11} = Y_0 (V^* A^T + V A^H) (V^* A^T - V A^H)^{-1}$ $Y_{12} = Y_{21}^T = -2Y_0(AV^H - A^*V^T)^{-1}$ $Y_{22} = Y_0 (BV^H + B^*V^T) (AV^H - A^*V^T)^{-1}$ for some unitary matrix V, where $A = U_{I}(I - \Lambda_{I}^{2})^{-\frac{1}{2}} + V_{I}(I - \Lambda_{I}^{2})^{-\frac{1}{2}}\Lambda_{I}$ $B = U_{I}(I - \Lambda_{I}^{2})^{-\frac{1}{2}} - V_{I}(I - \Lambda_{I}^{2})^{-\frac{1}{2}}\Lambda_{I}$

Network Synthesis From Admittance Matrix

Generalized Π-Network

- Let I(Y) be the number of nonzero components in the realization of Y
- For general dense Y, $I(Y) = 2N^2 + N$
- We design simplest decoupling network by solving

$$Y^{\star} = \operatorname*{arg\,min}_{Y:(Y_0I-Y)(Y_0I+Y)^{-1}\in\mathcal{S}} \mathbf{I}(Y)$$

• \mathcal{S} has N^2 degrees of freedom, so there is a lower bound $I(Y^{\star}) \geq I^{\star}$

$$\mathbf{I}^* = 2N^2 + N - N^2 = N^2 + N.$$

• A design method is introduced to achieve this lower bound

Design Method for Simple Decoupling Networks

Minimum-complexity method

Follow the steps below:

1 Calculate $N \times N$ complex matrices P and Q using: $P = (I - S_I S_I^H)^{-1}, \quad Q = S_I^H (I - S_I S_I^H)^{-1}$ and use p_{ii} , q_{ii} to denote the *ij*th element of P and Q. ② If $N \ge 3$, solve the following quadratic equation for real θ_1 : $d_1 \tan^2 \theta_1 + d_2 \tan \theta_1 + d_3 = 0$ where $d_1 = \gamma_{21}(\delta_{N1}\gamma_{N2} - \gamma_{N1}\delta_{N2}) - \delta_{21}(\delta_{N1}\alpha_{N2} - \gamma_{N1}\beta_{N2})$ $d_2 = \alpha_{21}(\delta_{N1}\gamma_{N2} - \gamma_{N1}\delta_{N2}) - \delta_{21}(\beta_{N1}\alpha_{N2} - \alpha_{N1}\beta_{N2})$ $+\gamma_{21}(\beta_{N1}\gamma_{N2}-\alpha_{N1}\delta_{N2})-\beta_{21}(\delta_{N1}\alpha_{N2}-\gamma_{N1}\beta_{N2})$ $d_3 = \alpha_{21}(\beta_{N1}\gamma_{N2} - \alpha_{N1}\delta_{N2}) - \beta_{21}(\beta_{N1}\alpha_{N2} - \alpha_{N1}\beta_{N2})$ $\alpha_{ii} = \text{Re}\{p_{ii} + q_{ii}\}, \quad \beta_{ii} = \text{Im}\{-p_{ii} + q_{ii}\},\$ $\gamma_{ii} = \operatorname{Im}\{p_{ii} + q_{ii}\}, \quad \delta_{ii} = \operatorname{Re}\{p_{ii} - q_{ii}\}.$ If a real solution for θ_1 does not exist or N = 2, set $\theta_1 = \pi/2$.

Minimum Complexity Method

Method (cont'd)

Sealize the Π -network circuit using Y^{\star}

Theorem

Y	* =												
Г	· ×	×	×		×	×	×	0	0		0	0 -	1
	×	×	\times		\times	\times	0	\times	\times		\times	*	N+1
	×	×	×		×	×	0	0	×		×	×	2 N+2
	•				•	•	•	•	•		•		
		:		· · ·			:			·.		1	
	×	×	\times		\times	\times	0	0	0		\times	×	3
	\times	×	×		×	×	0	0	0		0	\times	
	×	0	0		0	0	×	0	0		0	0	
	0	×	0		0	0	0	\times	0		0	0	
	0	×	\times		0	0	0	0	\times		0	0	
		:	:	· · .	:	:	:	:	:	·.	:		
	•	•	•	•	•	•	•	•	•	•	•	•	
	0	×	×		×	0	0	0	0		×	0	
L	. 0	*	×		×	×	0	0	0	• • •	0	× _]

• Symmetric loads have the form

$$S_L = \begin{bmatrix} \mu_L + \xi_L & \xi_L & \cdots & \xi_L \\ \xi_L & \mu_L + \xi_L & \cdots & \xi_L \\ \vdots & \vdots & \ddots & \vdots \\ \xi_L & \xi_L & \cdots & \mu_L + \xi_L \end{bmatrix}$$

• A realization of decoupling network with linear number of components?

Symmetric Simplification Method

Symmetric Simplification Method

Follow the steps below:

• Calculate
$$\mu_1, \xi_1, \mu_2, \xi_2$$
 as follows:

$$\mu_1 = \frac{1}{1 - |\mu_L|^2}$$

$$\xi_1 = -\frac{\mu_L \xi_L^* + \mu_L^* \xi_L + N|\xi_L|^2}{(1 - |\mu_L|^2)(N\mu_L \xi_L^* + N\mu_L^* \xi_L + |\mu_L|^2 + N^2|\xi_L|^2 - 1)}$$

$$\mu_2 = \mu_L^* \mu_1$$

$$\xi_2 = \mu_l^* \xi_1 + \xi_L^* \mu_1 + N\xi_L^* \xi_1$$

2 Compute real
$$\theta_1 = \frac{\angle \xi_2 - \arccos(-\frac{\operatorname{Re}\{\xi_1\}}{|\xi_2|})}{2}$$

3 Let

$$\mu_{11} = \frac{2\text{Re}\{e^{-j\theta_1}\mu_1 + e^{-j\theta_1}\mu_2\} - \cos\theta_1}{\sin\theta_1}$$

$$\xi_{11} = \frac{2\text{Re}\{e^{-j\theta_1}\xi_1 + e^{-j\theta_1}\xi_2\}}{\sin\theta_1}$$

$$\mu_{12} = \mu_{21} = -\frac{\sqrt{2\text{Re}\{\mu_1 + \xi_1 + e^{-j2\theta_1}(\mu_2 + \xi_2)\} - 1}}{\sin\theta_1}$$

$$\mu_{22} = \cot\theta_1$$

Then realize the network using the components

 $c_1 = -jY_0N\xi_{11}$ $c_2 = jY_0(\mu_{11} + N\xi_{11} + \mu_{12})$ $c_3 = -jY_0\mu_{12}$ $c_4 = jY_0(\mu_{12} + \mu_{22})$

The realized network has only 4N components

Other Design Methods

- Figures (a), (b) and (c) show three other topologies that may be derived
- All three methods are "suboptimal", since they require N more components than Minimum-Complexity Method
- They may have other advantages (such as high bandwidth)

Overview

Background

- Introduction to Coupling and Matching
- Decoupling Multiple Antennas

2 Systematic Design of Decoupling Networks

- Properties of Decoupling Networks
- Design Methods for Simple Decoupling Networks
- Other Design Methods

Where Work is Needed

- High-Bandwidth Decoupling Network Design
- Theoretical Bounds on Bandwidth
- Lossy Matching Networks

Summary

Definition of Bandwidth

• Bandwidth of a single-port matched load is the frequency range for which less than 4% power is reflected

Power Reflection Ratio

The power reflection ratio r in the RF system is the ratio between the expected reflected power and the expected incident power

$$r = \frac{\mathbb{E} tr\{\vec{b}_{1}^{H}\vec{b}_{1}\}}{\mathbb{E} tr\{\vec{a}_{1}^{H}\vec{a}_{1}\}} = \frac{\mathbb{E} tr\{\vec{a}_{1}^{H}S_{LM}^{H}S_{LM}\vec{a}_{1}\}}{\mathbb{E} tr\{\vec{a}_{1}^{H}\vec{a}_{1}\}} = \frac{1}{N} \|S_{LM}\|$$

Bandwidth

The *bandwidth* of the N matched loads is the frequency range that $r \leq 0.04$ in the vicinity of the design frequency f_d .

$$f_{\rm BW} = \max\{f_2 - f_1 : f_1 \le f_d \le f_2, r(f) \le 0.04, \forall f_1 \le f \le f_2\}$$

where f_1 , f_2 are lower and upper cutoff frequency, respectively.

Bandwidth Analysis of Decoupling Networks

- The admittance of the decoupling network at frequency $f = f_d + \Delta f$ is $Y(f) = Y + Y_e(\Delta f) \approx Y + Y_f \Delta f$
- When the decoupling network is connected to the loads, the first order *r* and bandwidth are

$$r \approx \frac{\Delta f^2}{4N} \left\| \begin{bmatrix} I & VA^H \end{bmatrix} Y_f \begin{bmatrix} I \\ A^*V^T \end{bmatrix} \right\|_F^2$$
$$f_{BW} \approx f_{BW}^{(1)} = \frac{0.8\sqrt{N}}{\left\| \begin{bmatrix} I & VA^H \end{bmatrix} Y_f \begin{bmatrix} I \\ A^*V^T \end{bmatrix} \right\|_F^2}$$

When Π-network is used

$$[Y_f]_{ij} = \begin{cases} -|y_{ij}| & i \neq j \\ |\sum_{k=1}^{2N} y_{ik}| + \sum_{k=1, k \neq i}^{2N} |y_{ik}| & i = j \end{cases}$$

Optimization problem

$$\max_{V:V^HV=I} f_{BW}^{(1)}$$

High-Bandwidth Decoupling Network Design

Comparison of Two Design Methods (at 2.4 GHz)

- High Bandwidth Method has three times the bandwidth of Minimum-Complexity Method
- What is the best we can do?
- Increase the bandwidth by cascading multi-port networks?

Theoretical Bounds on Bandwidth

Bode-Fano Bound

• Well-known Bode-Fano result for an RC load: Theoretical limit on bandwidth

$$\int_0^\infty \ln \frac{1}{|\Gamma(f)|} df \le \frac{\pi}{RC}$$

• Find a high-dimensional version of the Bode-Fano bound?

Lossy Matching Networks

• For lossy matching networks, the total power delivered to the loads matters

Definition for Power Delivery Ratio

The *power delivery ratio* d is the ratio between the expected power delivered to the loads and the expected incident power

$$d = \frac{\mathbb{E}\mathrm{tr}\{\vec{b}_{2}^{H}\vec{b}_{2} - \vec{a}_{2}^{H}\vec{a}_{2}\}}{\mathbb{E}\mathrm{tr}\{\vec{a}^{H}\vec{a}\}} = \frac{1}{N}\mathrm{tr}\{S_{21}^{H}(I - S_{22}S_{L})^{-H}(I - S_{L}^{H}S_{L})(I - S_{22}S_{L})^{-1}S_{21}\}$$

- Find the decoupling network that is least sensitive to the resistive losses?
- Design lossy matching network that maximizes d?

Overview

Background

- Introduction to Coupling and Matching
- Decoupling Multiple Antennas

2 Systematic Design of Decoupling Networks

- Properties of Decoupling Networks
- Design Methods for Simple Decoupling Networks
- Other Design Methods

Where Work is Needed

- High-Bandwidth Decoupling Network Design
- Theoretical Bounds on Bandwidth
- Lossy Matching Networks

Summary

- What we showed:
 - Systematic design of decoupling networks using $N^2 + N$ components, the minimum possible
 - Decoupling networks realization using linear number of components for special loads
 - High-bandwidth designs (that are not minimum complexity)
- Rich area for future work:
 - What is best we can do in bandwidth?
 - How do we handle lossy components?
 - How do we layout complicated decoupling networks?
 - What load properties lead to linear-in-N complexity networks?

References

- D. Nie, B. Hochwald, E. Stauffer, "Systematic design of large-scale multiport decoupling networks," *IEEE Transactions of Circuits and Systems I: Regular Papers*, vol. 61, July 2014, pp. 2172–2181.
- S. Blanch, J. Romeu, I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," *Electronic Letters*, vol. 39, May 1, 2003, pp. 705–707.