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MIMO Wireless Systems

§ H §

e With receive antenna cooperation: C' = M log(SNR)

X RX

e Without receive antenna cooperation: C' = log(SNR), (Interference
channel, Carleial, 1975)

Can we realize a pre-log of M without receive antenna cooperation?
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An Interference Relay Network
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Review of Previous Work

e Ground-breaking work by Gupta & Kumar, 2000 shows that capacity
in large ad-hoc networks scales at least as ©(y/n).

e Capacity in large relay networks scales as ©(log n) (Gastpar & Vetterli,
2002).

e Capacity in large ad-hoc networks with node mobility scales as O(n)
(Grossglauser & Tse, 2002).

e Capacity in large ad-hoc networks with network coding scales as ©(n)
(Gupta & Kumar, 2003).

e Power efficiency in large fading relay networks scales at least as
©(y/n) (Dana & Hassibi, 2003).
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Assumptions

e All terminals are equipped with single-antenna transceivers.

e A number of designated source-destination (S-D) pairs wants to
establish communication assisted by a set of relays.

e No cooperation between source terminals and between destination
terminals.

e No direct links between source and destination terminals.

e Asthe network grows large the number of S-D pairs remains
constant, the number of relay terminals goes to infinity.

e Encompasses traditional relay networks as special case.
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MIMO Gains in Coherent Point-to-Point Links

e Inan M x M coherent MIMO system, capacity satisfies (receive
antenna cooperation necessary)

C' ~ M log(SNR)

with the multiplexing gain given by the pre-log M.

e Array gain is the SNR improvement resulting from coherent
combining. Ina 1 x M system with perfect receive CSI

C' =~ log(M SNR)

with array gain M.
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Interference Relay Network

M source nodes First hop

Second hop M destination
nodes

w
w

Independent data
streams

K single-antenna
relay terminals

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich © ETH, Communication Theory Group



Interference Relay Network Cont’d

e Source nodes transmit independent data streams.

e Two-hop communication using a “listen and transmit” protocol with
K relays and perfect synchronization.

e Channels H; and Gy, are ergodic i.i.d. Gaussian block-fading.
e Random variables Ey and Py, capture large-scale fading and path loss.

e Nodes are placed in a domain of fixed area with a dead-zone around
source and destination nodes = E;, and P, are positive and bounded.
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An Upper Bound on Network Capacity

e Destination terminals are assumed to be able to cooperate and have
perfect knowledge of the composite MIMO channel.

e Relay terminals have perfect knowledge of all their backward and
forward channels.

e Upper bound through “max-flow min-cut theorem”

Z R < [<X(S);Y(SC)‘X(SC)).
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The Broadcast Cut
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Cut set bound achieved if all the relay and destination terminals cooperate.
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Lower Bound: Relay Partitioning
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Lower Bound: Matched Filtering
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Lower bound through relay partitioning, MF, and independent decoding
(i.e. no cooperation) at destination terminals.
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Smart Scattering
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Distributed multi-stream separation through smart scatterers
performing matched-filtering.
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Capacity Scaling: Main Result

e For K — oo, lower bound approaches upper bound and the network
capacity converges (w.p.1) to

C = %log(K) + O(1).

e Asymptotically in K cooperation between destination terminals is
not needed to achieve network capacity.

e Independent decoding at the destination terminals achieves network
capacity = significant reduction in computational complexity
compared to vector decoding.
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Capacity Scaling: Implications

e Multiplexing gain of M /2 without cooperation between destination
terminals.

e Loss in spectral efficiency (factor 1/2) due to “listen and transmit”
protocol.

e Distributed array gain of K.

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich © ETH, Communication Theory Group 15



Distributed Interference Cancelation
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Practical Ramifications

e Multi-stream separation realized in a completely decentralized
fashion = Distributed interference cancelation.

e Network coding not needed to achieve capacity in large interference
relay networks = Matched filtering is good enough.
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No Channel Knowledge at the Relays

e \We relax the assumption of channel knowledge at the relays. k-th
relay terminal needs to know Ej 4 noise variance.

e Relays simply perform amplify-and-forward (AF).

e Receiver knows composite MIMO channel.
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AF Interference Relay Networks
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Capacity Scaling in the AF Case

e Inthe large relay limit K — oo, AF interference relay network
approaches point-to-point MIMO system with perfect receive CSI.

e Asymptotic capacity is half the capacity of a point-to-point coherent
MIMO channel given by (receive terminal cooperation necessary)

M

e SNR depends critically on Ej.
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Capacity Scaling in the AF Case Cont'd

e Multiplexing gain of M /2 realized.

e Number of relay terminals does not enter scaling law! = No
distributed array gain.

e Relays can help to restore the rank of poor-scattering channels (active
(but dumb) scatterers).

e Cooperation between destination terminals is crucial.
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Convergence of Capacity in the AF Case
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Capacity vs. number of relays for the AF interference relay network
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Conclusion

e We showed that MIMO gains can be realized in large interference
relay networks in a completely distributed fashion.

e Smart scatterers realize multi-stream separation without cooperation
between any of the terminals.

e Dumb scatterers rebuild multiplexing gain in poor-scattering
environments.

e Open Issues: Synchronization, scaling number of source-destination
terminals as well.
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