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MIMO Wireless Systems

TX RXH

• With receive antenna cooperation: C = M log(SNR)

• Without receive antenna cooperation: C = log(SNR), (Interference
channel, Carleial, 1975)

Can we realize a pre-log of M without receive antenna cooperation?
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An Interference Relay Network
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Review of Previous Work

• Ground-breaking work by Gupta & Kumar, 2000 shows that capacity
in large ad-hoc networks scales at least as Θ(

√
n).

• Capacity in large relay networks scales as Θ(log n) (Gastpar & Vetterli,
2002).

• Capacity in large ad-hoc networks with node mobility scales as Θ(n)
(Grossglauser & Tse, 2002).

• Capacity in large ad-hoc networks with network coding scales as Θ(n)
(Gupta & Kumar, 2003).

• Power efficiency in large fading relay networks scales at least as
Θ(

√
n) (Dana & Hassibi, 2003).
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Assumptions

• All terminals are equipped with single-antenna transceivers.

• A number of designated source-destination (S-D) pairs wants to
establish communication assisted by a set of relays.

• No cooperation between source terminals and between destination
terminals.

• No direct links between source and destination terminals.

• As the network grows large the number of S-D pairs remains
constant, the number of relay terminals goes to infinity.

• Encompasses traditional relay networks as special case.
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MIMO Gains in Coherent Point-to-Point Links

• In an M × M coherent MIMO system, capacity satisfies (receive
antenna cooperation necessary)

C ≈ M log(SNR)

with the multiplexing gain given by the pre-log M .

• Array gain is the SNR improvement resulting from coherent
combining. In a 1 × M system with perfect receive CSI

C ≈ log(M SNR)

with array gain M .
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Interference Relay Network
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Interference Relay Network Cont’d

• Source nodes transmit independent data streams.

• Two-hop communication using a “listen and transmit” protocol with
K relays and perfect synchronization.

• Channels Hk and Gk are ergodic i.i.d. Gaussian block-fading.

• Random variables Ek and Pk capture large-scale fading and path loss.

• Nodes are placed in a domain of fixed area with a dead-zone around
source and destination nodes ⇒ Ek and Pk are positive and bounded.
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An Upper Bound on Network Capacity

• Destination terminals are assumed to be able to cooperate and have
perfect knowledge of the composite MIMO channel.

• Relay terminals have perfect knowledge of all their backward and
forward channels.

• Upper bound through “max-flow min-cut theorem”

∑

i∈S,j ∈Sc

R(i,j) ≤ I(X(S);Y(Sc)|X(Sc)).
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The Broadcast Cut
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Cut set bound achieved if all the relay and destination terminals cooperate.
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Lower Bound: Relay Partitioning
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Lower Bound: Matched Filtering
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Lower bound through relay partitioning, MF, and independent decoding
(i.e. no cooperation) at destination terminals.
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Smart Scattering
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Distributed multi-stream separation through smart scatterers
performing matched-filtering.

© ETH, Communication Theory Group 13



Capacity Scaling: Main Result

• For K → ∞, lower bound approaches upper bound and the network
capacity converges (w.p.1) to

C =
M

2
log(K) + O(1).

• Asymptotically in K cooperation between destination terminals is
not needed to achieve network capacity.

• Independent decoding at the destination terminals achieves network
capacity ⇒ significant reduction in computational complexity
compared to vector decoding.
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Capacity Scaling: Implications

• Multiplexing gain of M/2 without cooperation between destination
terminals.

• Loss in spectral efficiency (factor 1/2) due to “listen and transmit”
protocol.

• Distributed array gain of K .
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Distributed Interference Cancelation
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Practical Ramifications

• Multi-stream separation realized in a completely decentralized
fashion ⇒ Distributed interference cancelation.

• Network coding not needed to achieve capacity in large interference
relay networks ⇒ Matched filtering is good enough.
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No Channel Knowledge at the Relays

• We relax the assumption of channel knowledge at the relays. k-th
relay terminal needs to know Ek + noise variance.

• Relays simply perform amplify-and-forward (AF).

• Receiver knows composite MIMO channel.
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AF Interference Relay Networks
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Capacity Scaling in the AF Case

• In the large relay limit K → ∞, AF interference relay network
approaches point-to-point MIMO system with perfect receive CSI.

• Asymptotic capacity is half the capacity of a point-to-point coherent
MIMO channel given by (receive terminal cooperation necessary)

C∞
AF =

M

2
log(SNR) + O(1).

• SNR depends critically on Ek.
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Capacity Scaling in the AF Case Cont’d

• Multiplexing gain of M/2 realized.

• Number of relay terminals does not enter scaling law! ⇒ No
distributed array gain.

• Relays can help to restore the rank of poor-scattering channels (active
(but dumb) scatterers).

• Cooperation between destination terminals is crucial.
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Convergence of Capacity in the AF Case
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Capacity vs. number of relays for the AF interference relay network
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Conclusion

• We showed that MIMO gains can be realized in large interference
relay networks in a completely distributed fashion.

• Smart scatterers realize multi-stream separation without cooperation
between any of the terminals.

• Dumb scatterers rebuild multiplexing gain in poor-scattering
environments.

• Open Issues: Synchronization, scaling number of source-destination
terminals as well.
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