Channel Measurements and Characterization for High Bandwidth Mobile Network MIMO links

R. A. Valenzuela, D.Chizhik and J. Ling

Wireless Communications Research Department

Bell Laboratories, Lucent Technologies

MNM project overview

- Demonstrate an adaptive ad hoc mobile network with very high spectral efficiencies using wide bandwidth (up to 25 MHz) MIMO links in a mixed open/forested environment
- Location: Naval Air Development Center, Lakehurst, NJ
- Demonstration using 20 SUVs equipped with 10 antennas
- SUV driven in 2 counter rotating rings over an area roughly 2 km by 4 km

MNM project goals

- 3 demonstration modes:
 - 1 MHz bandwidth, 1 Mbps, using spectral spreading of 5, resulting in required physical layer spectral efficiency of 5 bits/sec/Hz
 - 10 MHz bandwidth, 10 Mbps, spectral spreading of 5, resulting in required physical layer spectral efficiency of 5 bits/sec/Hz
 - 25 MHz, 600 Mbps, required spectral efficiency of 24 bits/sec/Hz

Lucent approach

- Deploy 8×10 MIMO terminals
- Use DSSS for 1 MHz and 10 MHz, using correlators, followed by a VBLAST "virtual antenna" processor. QPSK
- Use OFDM with 15 kHz frequency bins. Use VBLAST per frequency bin. Up to 64 QAM
- Permitted transmit power is 5 Watts average power/antenna for a total radiated power of 40 Watts from each terminal

Objectives/Challenges

Key issues in channel characterization

- Path loss and ambient noise determine SNR, interference levels, and achievable rates
- Frequency selectivity impacts wideband system performance, determines spectral width of each OFDM sub channel, length of the cyclic prefix, number of rake fingers
- Spatial richness determines the number of spatial degrees of freedom supported by the channel, optimum antenna placement.
- Temporal channel variation impacts the frequency at which the channel needs to be measured and channel estimation methods
- Develop simplified MIMO channel models

Technical approach

- Frequency selectivity: Measure wideband 1×1 channels to get power delay profile, delay spread.
- Spatial richness: Collect narrowband 8 × 10 H-matrices to compute capacities, effective degrees of freedom, correlations, effective antenna spacing and arrangements.
- Combine spatial and delay profile measurements to construct a wideband MIMO channel model
- Path loss and ambient noise measurements to assess SNR and interference levels
- Temporal variability measurements collected while stationary to get channel coherence times

Spatial channel characterization

- Measure narrowband H-matrices while moving the receiver in the vicinity of a way point.
- Compute transmitter and receiver antenna correlations as a function of antenna separation and disposition (perpendicular and parallel to the vehicle).
- Determine optimal antenna separation and disposition.
- Determine number of effective transmit antennas
- Compare capacities of synthetically generated Hmatrices to the capacities of measured H-matrices as a test for keyholes:
 - Is there capacity pinching somewhere else in the channel that cannot be remedied through proper antenna placement?
 Lucent Technologies

Aspects of research interest

- First measurement campaign to determine wideband MIMO channel properties for
 - Low antenna heights (both antennas at ~ 2 meters)
 - New environments: Forested and open field areas with large obstructions
 - New applications: ad hoc networks with low access point antennas, tactical communications
 - No recognized models exist for path loss, let alone MIMO channel properties!

Technical approach

- Frequency selectivity: Measure wideband 1×1 channels to get power delay profile, delay spread.
- Spatial richness: Collect narrowband 8 × 10 H-matrices to compute capacities, effective degrees of freedom, correlations, effective antenna spacing and arrangements.
- Combine spatial and delay profile measurements to construct a wideband MIMO channel model
- Path loss and ambient noise measurements to assess SNR and interference levels
- Temporal variability measurements collected while stationary to get channel coherence times

Lakehurst site

Channel sounding equipment

- Measurements collected at 2.5 GHz
- Wideband sounder, 6 W of transmit power over 6 MHz bandwidth.
- Narrowband 8×10 H-matrix measurements
 - Narrowband 8-antenna transmitter, emitting a 1 Watt CW signal from each antenna.
 - Narrowband 10-antenna receiver, with ten dedicated I/Q receiver chains, minimum integration window of 1.5 ms.
 - 6 dBi azimuthally omnidirectional antennas

Narrowband MIMO Calibration

- VSNR up and running with all 16 receivers and 16 transmitters
- 16 by 16 Keyhole test on bench top using external frequency references (as opposed to Nova sources).
- C_{meas}=10.66 bps/Hz at 20 dB SNR.
 C_{theor}=log2(1+100*16)=10.64 bps/Hz at 20 dB SNR.
- Temporal stability (important for calibrated phased array measurements): assessed using a keyhole connection.
- Phase of received signals relative to 1st receiver used as a reference: difference between min and max phase deviations across receivers is 1.1 degree overnight.
- Transmitter phase changed randomly overnight. (DDS sources not synced)
- Short term stability: No measurable phase difference (to 5 decimal places) on any channel after 10 minutes.

Power delay profile (low delay)

Power delay profile (high delay)

Power delay profile (very high delay)

Frequency coherence

Wideband data for the inner ring

				rms		90%	95%
				delay	Received	delay	delay
Transmitter	Receiver	Measured	Path	spread	power	span	span
location	location	SNR(dB)	Gain(dB)	(µs)	(dBm)	(µs)	(µs)
	Parking lot						
Parking lot	at 10 m	79.6	-58.5	0.08	-59.5	0.3	0.3
Χ	F	75.4	-101.9	0.27	-62.9	0.8	0.8
Χ	V	66.9	-106.9	0.33	-67.9	0.9	0.9
Χ	G	67	-101.5	0.13	-62.5	0.3	0.3
X	Н	43.5	-137.3	1.45	-98.3	5.4	5.5
Χ	L	46.6	-133.4	1.05	-94.4	0.9	7.1
Χ	6	36.8	-144.3	0.57	-105.3	1.8	1.9
Н	G	57.2	-121.9	1.15	-82.9	3.4	6
Н	V	53.5	-127.1	1.36	-88.1	4.5	4.7
G	V	60.1	-87.9	0.34	-48.9	0.3	0.3
G	F	59.5	-118.5	0.89	-79.5	0.7	1
V	F	57.5	-116.4	1.71	-77.4	7.1	7.2
V	L	59.4	-120.7	0.6	-81.7	1.3	1.6
F	L	58.9	-119.2	0.86	-80.2	1.4	1.5
F	6	29.1	-151.5	1.59	-112.5	6.3	6.4
L	6	35.1	-145.6	0.69	-106.6	1.6	3.2
L	Н	79	-95.6	0.12	-56.6	0.2	0.2
6	Н	59.1	-121.2	0.1	-82.2	0.3	0.3
6	G	61	-120.1	0.19	-81.1	0.3	0.3
6	G	61	-120.1	0.19	-81.1	0.3	0.3
21	10	40.2	-142	0.82	-103	0.3	0.6
19	10	44.8	-132.8	0.79	-93.8	0.6	0.7
	Parking lot						
Parking lot	at 13 m	78.4	-60.6	0.07	-61.6	0.2	0.2

Wideband data for the outer ring

				rms		90%	95%
			Path	delay	Received	delay	delay
Transmitter	Receiver	Measured	Gain	spread	power	span	span
location	location	SNR(dB)	PG(dB)	(μs)	(dBm)	(μs)	(μs)
	Parking lot	,	, ,	,		, i	,
Parking lot	at 10 m	78.1	-57.4	0.07	-58.4	0.1	0.2
4	2a	6.2	-172.9	0	-133.9	0	0
5	4	58.4	-120	0.06	-81	0.1	0.2
6	5	48	-131.6	0.32	-92.6	1.1	1.2
11	10	63.1	-114.6	0.07	-75.6	0.1	0.2
12	11	63.9	-90.7	0.08	-61.7	0.1	0.2
16	12	9.6	-170.2	0.04	-131.2	0.1	0.1
19	16	13.2	-165.9	0.08	-126.9	0.3	0.3
21	19	65.2	-102.8	0.08	-63.8	0.2	0.2
22	19	29.2	-151.9	3.53	-112.9	8.5	8.7
22	21	65.4	-100.6	0.11	-61.6	0.2	0.3
23	22	57.7	-121.2	2.11	-82.2	5.6	7.3
23	F	78	-90.6	0.17	-61.6	0.2	0.2
5	2a		<-173				
6	4	21.1	-159.6	0.1	-120.6	0.3	0.3
10	5	24.7	-157.2	0.33	-118.2	0.9	1
10	6	12.9	-160.4	0.98	-121.4	2.2	2.2
11	6		<-173				
12	10	50.5	-130.3	0.87	-91.3	0.3	0.6
16	11		<-173				
19	12	27.3	-153.7	1.57	-114.7	0.2	0.3
21	16		<-173				
F	21	47.7	-125.1	1.52	-86.1	6	6.1
23	21	63.4	-115.6	0.72	-76.6	0.3	4.3
2a	22	15.1	-166.3	0.15	-127.3	0.4	0.4
2a	F	22.4	-158.1	0.35	-119.1	1.5	1.5
2a	23	34.8	-145.3	0.35	-106.3	1	1
11	L	33.5	-146	1.12	-107	4.4	5.3
12	L	44.5	-136.2	0.99	-97.2	5	7.1

Capacity in free space

Theoretical capacity for an 8 by 10 MIMO system at 20.0 dB SNR

LOS 8×10 MIMO capacity at 50 m, 23 dBm

Measured 8×10 capacities for long range links at 23 dB SNR

Summary

- Extensive MIMO measurements in rural wooded/open areas conducted using ground level platforms.
- Median rms delay spread of about 0.3 μsec, 90% of delays below 1.5 μsec.
- Median 8×10 MIMO capacities at 23 dB SNR found to be generally high:
 - Long range links median capacity of 37 bps/Hz (65 % of corresponding Rayleigh *iid* capacity)
 - LOS links median capacity of 44 bps/Hz (77 % of corresponding Rayleigh iid capacity)
- Use of dual polarization has been found to increase capacity in LOS links by over 50%.

