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Problem Statement

• MIMO channel model (over one symbol period)

y =

√

Γ

nt
H x + w

◦ nt transmit and nr receive antennas

◦ power constraint: E[x†x] ≤ nt

• Channel Statistics

◦ elements of H identically distributed with:

☞ finite variance (normalized to 1)

☞ Hk,` having same distribution as −Hk,`

☞ possible correlation among elements

• Coherent channel assumption

◦ H known at receiver; statistics of H known at Tx

• Ergodic Capacity and Optimal Input Distribution?

• Asymptotics as nt, nr → ∞?
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Previous Work

☞ I.i.d model for H

• Capacity; closed-form asymptotic capacity [Telatar ’99]

• Accuracy of asymptotics [Kamath&Hughes ’02]

☞ Correlated model for H

• Characterization of optimal input; optimality of beamforming

Visotsky & Madhow (MISO case)

Jafar & Goldsmith

Jorswieck & Boche

Simon & Moustakas

• Asymptotics and capacity scaling [Chua et al ’02]

☞ Product form correlation

E
[

Hk,` H?
p,q

]

= ρt
i,p ρr

j,q
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Channel Model for ULA’sPSfrag replacements

Tx Rx

φt,1

φt,2

φt,nt

φr,1
φr,2

φr,nr

• Scaled (virtual) angle

θ =
d(sin(φ) + 1)

λc
= 0.5(sin(φ) + 1) (half-wavelength spacing)

• Physical Channel Model

H =
√

nt, nr

∫ 1

0

∫ 1

0

α(θr, θt) ar(θr) a†t(θt) dθr dθt

at(θt) = 1√
nt

[

1, e−j2π(θt−0.5), · · · , e−j2π(nt−1)(θt−0.5)
]>
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Virtual Representation
PSfrag replacements

Tx Rx

θt,1 θt,2

θt,nt

θr,1

θr,2

θr,nr

• Steering along nt and nr virtual angles spaced equally in [0, 1]

Ar = [ar(θr,1), ar(θr,2), · · · , ar(θr,nr)]

At = [at(θt,1), at(θt,2), · · · , at(θt,nt)]

• Ar and At are unitary discrete Fourier transform matrices

• Virtual Channel Model

H = Ar H̃A†
t

5



Spatial Scattering Function

• Uncorrelated scattering assumption

E[α(θr, θt) α∗(θ′r, θ
′
t)] = Ψ(θr, θt) δ(θr − θ′r) δ(θt − θ′t)

PSfrag replacements

Tx

0 1

1

Rx

θt

θr
Ψ(θr, θt)

∫ ∫

Ψ(θr, θt) dθr dθt = 1
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Virtual Channel Coefficients

H = Ar H̃A†
t

☞ Key Property: H̃k,` approximately uncorrelated

☞ Variance Matrix: V with Vk,` = E[|H̃k,`|2] ≈ Ψ(θr,k, θt,`)

PSfrag replacements

0

1

1

θr

θt

Ψ(θr, θt)

V1,1

Vk,`

Vnr,nt

∑

q

∑

v Vk,` = ntnr
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Ergodic Capacity in Virtual Domain

y =

√

Γ

nt
H x + w

☞ Capacity achieved by zero-mean proper complex Gaussian x with
covariance Q that satisfies Tr(Q) ≤ nt

C = max
Q:Tr(Q)≤nt

E

[

log det

(

I +
Γ

nt
HQH†

)]

ỹ =

√

Γ

nt
H̃x̃ + w̃

☞ x̃ = A†
tx; ỹ = A†

ry; w̃ = A†
rw

☞ Capacity achieved by zero-mean proper complex Gaussian x̃ with
covariance Q̃ that satisfies Tr(Q̃) ≤ nt

C = max
Q̃:Tr(Q̃)≤nt

E

[

log det

(

I +
Γ

nt
H̃Q̃H̃

†
)]
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Optimal Input Distribution

C = max
Q̃:Tr(Q̃)≤nt

E

[

log det

(

I +
Γ

nt
H̃Q̃H̃

†
)]

• Result: Optimal Q̃ is a diagonal matrix Λ◦

◦ signals sent along the different Tx angles θt,i independent

◦ λi power allocated to angle θt,i

◦ optimal λi’s easily found numerically

• Optimal Q satisfies Q◦ = AtΛ
◦A†

t

• Result: At sufficiently low SNR, only one element of Λ◦ is nonzero

◦ beamforming along Tx angle θt,i with largest total power gain is
optimal

◦ can also find necessary and sufficient condition for beamforming
to be optimal in terms of variance matrix V
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Asymptotically Optimal Power Allocation at Low SNR

Theorem. At low SNR, optimal Λ◦ has all elements equal to zero
except that λ◦

i = nt with index i identified by i = arg max
1≤`≤nt

∑nr
k=1 Vk,`.

If maximizing index is not unique, define index set

T =

{

i : i = arg max
1≤`≤nt

nr
∑

k=1

Vk,`

}

Then Λ◦ is such that
∑

i:i∈T λ◦
i = nt, λ◦

i ≥ 0 for i ∈ T
and λ◦

i = 0, for i 6∈ T
i.e., power is arbitrarily assigned to diagonal elements correspond-

ing to those maximizing indexes without changing capacity as long
as total power is nt.
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Condition for Beamforming to be Optimal

Theorem. A necessary and sufficient condition for beamforming
to i-th virtual angle to be optimal is given by

Γ

nr
∑

k=1

(1 − µk,i) Vk,`◦ −
nr
∑

k=1

µk,i ≤ 0,

where `◦ = arg max
1≤`≤nt

`6=i

nr
∑

k=1

(1 − µk,i) Vk,`. The functions µk,i are

defined as

µk,i := µk,i (V1,i, V2,i, . . . , Vnr,i) = E

[

Γ |H̃k,i|2
1 + Γ‖h̃i‖2

]

Among above nt conditions corresponding to 1 ≤ i ≤ nt, at most
one can be satisfied.
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Example of Correlated MIMO Channel

• An example: 5 × 5 MIMO channel with variance matrix

V =
25

5.7













0.1 0 1 0 0
0 0.1 1 0 0
0 0 1 0 0
0 0 1 0.25 0
0 0 1 0 0.25













• Variance matrix V represents physical environment with two
small scatterers, two bigger scatterers, and one large scattering
cluster

• Original H has highly correlated entries, because V has small
fraction of dominant entries
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Numerical Results for Channel in Example
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• Information rate is improved by using optimal inputs; improvement be-
comes less significant as SNR increases

• Beamforming is optimal for SNR’s below 0.29 dB, and remains close to
optimal for SNR’s below 5 dB
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Effect of Correlation on Capacity
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• Corr. channel has larger capacity than i.i.d. channel for SNR’s below 2 dB

• Multiplexing gain offered by i.i.d. channel manifests itself only at sufficiently
high SNR’s
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Asymptotics for Large Number of Antennas

C = E

[

log det

(

I +
Γ

nt
H̃Λ◦H̃

†
)]

• For simplicity, let nt = nr = n, and let n → ∞

• Normalized asymptotic capacity

C̄ =
1

n

[

log det

(

I +
Γ

n
H̃Λ◦H̃

†
)]

• Key quantity: limiting eigenvalue distribution of H̃Λ◦H̃
†
/n

◦ i.i.d. case is relatively easy – Wishart distribution [Teletar ’99]

◦ we exploit independence of entries of H̃ in correlated case to
apply random matrix result of Girko

◦ Λ◦ being diagonal is necessary to apply Girko’s result
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Limiting Input Power Profile and Stieltjes Transform

Assumption. For each n, define the function sn : [0, τ ] → <
by

sn(v) = λ` , for v ∈
[

` − 1

n
,
`

n

]

where ` = 1, · · · , bnτc. Then sn(v) is bounded for each n,
and converges uniformly to a limiting bounded function s(v) as
n → ∞.

Definition. The Stieltjes transform mA of a n× n Hermitian
matrix A is defined as

mA(z) =
1

n
Tr{(A − zI)−1)}
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Asymptotic Capacity

☞ Result 1: Assume that the Stieltjes transform of H̃ΛH̃
†
/n con-

verges to a limit denoted by m(z) as n → ∞. Then

lim
n→∞

C̄ =

∫ 1

0

1

t

(

1 − 1

tΓ
m

(

− 1

tΓ

))

dt (1)

☞ Result 2 [Girko]: The limiting Stieltjes transform of H̃ΛH̃
†
/n

exists as n → ∞, and it is given by:

m(z) =

∫ 1

0

e(u, z)du (2)

where e(u, t) satisfies

e(u, z) =

[

−z +

∫ 1

0

s(v)Ψ(u, v)dv

1 +
∫ 1

0 e(w, z)s(v)Ψ(w, v)dw

]−1

(3)

☞ Using (1), (2), (3), we get limiting C̄ directly in terms of Ψ
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Example 1
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Results – 1

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

SNR (dB)

C
ap

ac
ity

 (
bp

s/
H

z)
asymptotic approximation
exact

16*16 
12*12 

8*8 

4*4 

19



Example 2

0.4

25/6

25/6

0.2

0.8

0.2 0.8

0

0

0.6

0.4
PSfrag replacements

0 1

1

θr

θt

Ψ(θr, θt)

20



Results – 2

0 5 10 15 20 25 30
0

20

40

60

80

100

120

SNR (dB)

C
ap

ac
ity

 (
bp

s/
H

z)
asymptotic approximation
exact

20*20 15*15 

10*10 

5*5 

21



Conclusions

• Exploited virtual representation of MIMO Rayleigh fading channel
to analyze ergodic capacity under coherent assumption

• General model for channel statistics

• Results valid for arbitrary spatial scattering functions – no product
form assumption is required

• Optimal input covariance is diagonal in virtual domain

• Beamforming along one of nt fixed angles is optimal at low SNR

• Asymptotic normalized capacity expressed in terms of spatial
scattering function

• Asymptotics accurate even for 4 or 5 antennas at Tx and Rx
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