CAPACITY OF MIMO WIRELESS CHANNELS VIA VIRTUAL REPRESENTATION

Venu Veeravalli

National Science Foundation

&

Dept of ECE and Coordinated Science Lab University of Illinois at Urbana Champaign

vveerava@nsf.gov, vvv@uiuc.edu
http://www.comm.csl.uiuc.edu/~vvv

(Joint work with Yingbin Liang and Akbar Sayeed)

Problem Statement

• MIMO channel model (over one symbol period)

$$\underline{\boldsymbol{y}} = \sqrt{\frac{\Gamma}{n_t}} \boldsymbol{H} \ \underline{\boldsymbol{x}} + \underline{\boldsymbol{w}}$$

 \circ n_t transmit and n_r receive antennas

 \circ power constraint: $\mathsf{E}[oldsymbol{x}^\dagger oldsymbol{x}] \leq n_t$

• Channel Statistics

- \circ elements of H identically distributed with:
 - ☞ finite variance (normalized to 1)
 - $\textcircled{F} \boldsymbol{H}_{k,\ell}$ having same distribution as $-\boldsymbol{H}_{k,\ell}$
 - $\ensuremath{\textcircled{}^{\mbox{\scriptsize \sc only}}}$ possible correlation among elements

• Coherent channel assumption

- \circ **H** known at receiver; statistics of **H** known at Tx
- Ergodic Capacity and Optimal Input Distribution?
- Asymptotics as $n_t, n_r \rightarrow \infty$?

Previous Work

rightarrow I.i.d model for H

- Capacity; closed-form asymptotic capacity [Telatar '99]
- Accuracy of asymptotics [Kamath&Hughes '02]

$\operatorname{\mathfrak{S}}$ Correlated model for H

- Characterization of optimal input; optimality of beamforming Visotsky & Madhow (MISO case) Jafar & Goldsmith Jorswieck & Boche Simon & Moustakas
- Asymptotics and capacity scaling [Chua et al '02]

Product form correlation

 $\mathsf{E}\left[\boldsymbol{H}_{k,\ell} \; \boldsymbol{H}_{p,q}^{\star}\right] = \rho_{i,p}^{t} \; \rho_{j,q}^{r}$

Channel Model for ULA's

• Scaled (virtual) angle

 $\theta = \frac{d(\sin(\phi) + 1)}{\lambda_c} = 0.5(\sin(\phi) + 1) \quad \text{(half-wavelength spacing)}$

• Physical Channel Model

$$\boldsymbol{H} = \sqrt{n_t, n_r} \int_0^1 \int_0^1 \boldsymbol{\alpha}(\theta_r, \theta_t) \; \underline{a}_r(\theta_r) \; \underline{a}_t^{\dagger}(\theta_t) \; d\theta_r \; d\theta_t$$
$$\underline{a}_t(\theta_t) = \frac{1}{\sqrt{n_t}} \left[1, \; e^{-j2\pi(\theta_t - 0.5)}, \cdots, e^{-j2\pi(n_t - 1)(\theta_t - 0.5)} \right]^{\top}$$

Virtual Representation

- Steering along n_t and n_r virtual angles spaced equally in [0, 1] $\begin{aligned} A_r &= [\underline{a}_r(\theta_{r,1}), \underline{a}_r(\theta_{r,2}), \cdots, \underline{a}_r(\theta_{r,n_r})] \\ A_t &= [\underline{a}_t(\theta_{t,1}), \underline{a}_t(\theta_{t,2}), \cdots, \underline{a}_t(\theta_{t,n_t})] \end{aligned}$
- A_r and A_t are unitary discrete Fourier transform matrices
- Virtual Channel Model

$$\boldsymbol{H} = A_r \; \tilde{\boldsymbol{H}} A_t^{\dagger}$$

Spatial Scattering Function

Virtual Channel Coefficients

 $\boldsymbol{H} = A_r \; \tilde{\boldsymbol{H}} A_t^{\dagger}$

 \ll Key Property: $\tilde{H}_{k,\ell}$ approximately uncorrelated

 \sim Variance Matrix: V with $V_{k,\ell} = \mathsf{E}[|\tilde{H}_{k,\ell}|^2] \approx \Psi(\theta_{r,k}, \theta_{t,\ell})$

$$\underline{\boldsymbol{y}} = \sqrt{\frac{\Gamma}{n_t}} \ \boldsymbol{H} \ \underline{\boldsymbol{x}} + \underline{\boldsymbol{w}}$$

 $<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!<\!\!\!$ Capacity achieved by zero-mean proper complex Gaussian \underline{x} with covariance Q that satisfies $\mathrm{Tr}(Q)\leq n_t$

$$C = \max_{Q:\operatorname{Tr}(Q) \le n_t} \mathsf{E}\left[\log \det\left(I + \frac{\Gamma}{n_t} \mathbf{H} Q \mathbf{H}^{\dagger}\right)\right]$$

$$\widetilde{\underline{y}} = \sqrt{\frac{\Gamma}{n_t}} \widetilde{\underline{H}} \widetilde{\underline{x}} + \widetilde{\underline{w}}$$

 $\mathfrak{T} \widetilde{\boldsymbol{x}} = A_t^{\dagger} \boldsymbol{x}; \quad \tilde{\boldsymbol{y}} = A_r^{\dagger} \boldsymbol{y}; \quad \tilde{\boldsymbol{w}} = A_r^{\dagger} \boldsymbol{w}$

 $<\!\!\!\sim$ Capacity achieved by zero-mean proper complex Gaussian $\underline{\tilde{x}}$ with covariance \tilde{Q} that satisfies $\operatorname{Tr}(\tilde{Q}) \leq n_t$

$$C = \max_{\tilde{Q}: \operatorname{Tr}(\tilde{Q}) \le n_t} \mathsf{E}\left[\log \det\left(I + \frac{\Gamma}{n_t} \tilde{\boldsymbol{H}} \tilde{\boldsymbol{Q}} \tilde{\boldsymbol{H}}^{\dagger}\right)\right]$$

Optimal Input Distribution

$$C = \max_{\tilde{Q}: \operatorname{Tr}(\tilde{Q}) \le n_t} \mathsf{E}\left[\log \det\left(I + \frac{\Gamma}{n_t} \tilde{\boldsymbol{H}} \tilde{\boldsymbol{Q}} \tilde{\boldsymbol{H}}^{\dagger}\right)\right]$$

- **Result:** Optimal \tilde{Q} is a diagonal matrix Λ°
 - \circ signals sent along the different Tx angles $\theta_{t,i}$ independent
 - $\circ \lambda_i$ power allocated to angle $heta_{t,i}$
 - \circ optimal λ_i 's easily found numerically
- Optimal Q satisfies $Q^{\circ} = A_t \Lambda^{\circ} A_t^{\dagger}$
- **Result:** At sufficiently low SNR, only one element of Λ° is nonzero
 - \circ beamforming along Tx angle $\theta_{t,i}$ with largest total power gain is optimal
 - \circ can also find necessary and sufficient condition for beamforming to be optimal in terms of variance matrix V

Theorem. At low SNR, optimal Λ° has all elements equal to zero except that $\lambda_i^{\circ} = n_t$ with index *i* identified by $i = \arg \max_{1 \le \ell \le n_t} \sum_{k=1}^{n_r} V_{k,\ell}$.

If maximizing index is not unique, define index set

$$\mathcal{T} = \left\{ i : i = \arg \max_{1 \le \ell \le n_t} \sum_{k=1}^{n_r} V_{k,\ell} \right\}$$

Then Λ° is such that

$$\sum_{i:i\in\mathcal{T}} \lambda_i^\circ = n_t, \ \lambda_i^\circ \ge 0 \quad \text{for } i \in \mathcal{T}$$

and $\lambda_i^\circ = 0, \quad \text{for } i \notin \mathcal{T}$

i.e., power is arbitrarily assigned to diagonal elements corresponding to those maximizing indexes without changing capacity as long as total power is n_t . **Theorem.** A necessary and sufficient condition for beamforming to i-th virtual angle to be optimal is given by

$$\Gamma \sum_{k=1}^{n_r} (1 - \mu_{k,i}) V_{k,\ell^\circ} - \sum_{k=1}^{n_r} \mu_{k,i} \le 0,$$

where $\ell^{\circ} = \arg \max_{\substack{1 \le \ell \le n_t \\ \ell \ne i}} \sum_{k=1}^{n_r} (1 - \mu_{k,i}) V_{k,\ell}$. The functions $\mu_{k,i}$ are

defined as

$$\mu_{k,i} := \mu_{k,i} \left(V_{1,i}, V_{2,i}, \dots, V_{n_r,i} \right) = \mathsf{E} \left[\frac{\Gamma \| \tilde{\boldsymbol{H}}_{k,i} \|^2}{1 + \Gamma \| \underline{\tilde{\boldsymbol{h}}}_i \|^2} \right]$$

Among above n_t conditions corresponding to $1 \le i \le n_t$, at most one can be satisfied.

Example of Correlated MIMO Channel

 \bullet An example: 5×5 MIMO channel with variance matrix

$$V = \frac{25}{5.7} \begin{pmatrix} 0.1 & 0 & 1 & 0 & 0 \\ 0 & 0.1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0.25 & 0 \\ 0 & 0 & 1 & 0 & 0.25 \end{pmatrix}$$

- Variance matrix V represents physical environment with two small scatterers, two bigger scatterers, and one large scattering cluster
- Original H has highly correlated entries, because V has small fraction of dominant entries

Numerical Results for Channel in Example

- Information rate is improved by using optimal inputs; improvement becomes less significant as SNR increases
- Beamforming is optimal for SNR's below 0.29 dB, and remains close to optimal for SNR's below 5 dB

Effect of Correlation on Capacity

- Corr. channel has larger capacity than i.i.d. channel for SNR's below 2 dB
- Multiplexing gain offered by i.i.d. channel manifests itself only at sufficiently high SNR's

$$C = \mathsf{E}\left[\log \det\left(I + \frac{\Gamma}{n_t} \tilde{\boldsymbol{H}} \Lambda^{\circ} \tilde{\boldsymbol{H}}^{\dagger}\right)\right]$$

- For simplicity, let $n_t = n_r = n$, and let $n \to \infty$
- Normalized asymptotic capacity

$$\bar{C} = \frac{1}{n} \left[\log \det \left(I + \frac{\Gamma}{n} \tilde{\boldsymbol{H}} \Lambda^{\circ} \tilde{\boldsymbol{H}}^{\dagger} \right) \right]$$

• Key quantity: limiting eigenvalue distribution of $ilde{m{H}}\Lambda^\circ ilde{m{H}}^\dagger/n$

 \circ i.i.d. case is relatively easy – Wishart distribution [Teletar '99] \circ we exploit independence of entries of \tilde{H} in correlated case to apply random matrix result of Girko

 \circ Λ° being diagonal is necessary to apply Girko's result

Limiting Input Power Profile and Stieltjes Transform

Assumption. For each n, define the function $s_n : [0, \tau] \to \Re$ by

$$s_n(v) = \lambda_\ell$$
, for $v \in \left[\frac{\ell - 1}{n}, \frac{\ell}{n}\right]$

where $\ell = 1, \dots, \lfloor n\tau \rfloor$. Then $s_n(v)$ is bounded for each n, and converges uniformly to a limiting bounded function s(v) as $n \to \infty$.

Definition. The Stieltjes transform m_A of a $n \times n$ Hermitian matrix A is defined as

$$m_A(z) = \frac{1}{n} \operatorname{Tr}\{(A - zI)^{-1})\}$$

Asymptotic Capacity

 \sim **Result 1:** Assume that the Stieltjes transform of $\tilde{H} \wedge \tilde{H}^{\dagger}/n$ converges to a limit denoted by m(z) as $n \to \infty$. Then

$$\lim_{n \to \infty} \bar{C} = \int_0^1 \frac{1}{t} \left(1 - \frac{1}{t\Gamma} m \left(-\frac{1}{t\Gamma} \right) \right) dt \tag{1}$$

Result 2 [Girko]: The limiting Stieltjes transform of $\tilde{H} \wedge \tilde{H}^{\dagger}/n$ exists as $n \to \infty$, and it is given by:

$$m(z) = \int_0^1 e(u, z) du \tag{2}$$

where e(u, t) satisfies

$$e(u,z) = \left[-z + \int_0^1 \frac{s(v)\Psi(u,v)dv}{1 + \int_0^1 e(w,z)s(v)\Psi(w,v)dw} \right]^{-1}$$
(3)

 \checkmark Using (1), (2), (3), we get limiting $ar{C}$ directly in terms of Ψ

Results – 1

Example 2

20

Results – 2

- Exploited virtual representation of MIMO Rayleigh fading channel to analyze ergodic capacity under coherent assumption
- General model for channel statistics
- Results valid for arbitrary spatial scattering functions no product form assumption is required
- Optimal input covariance is diagonal in virtual domain
- Beamforming along one of n_t fixed angles is optimal at low SNR
- Asymptotic normalized capacity expressed in terms of spatial scattering function
- Asymptotics accurate even for 4 or 5 antennas at Tx and Rx

V. V. Veeravalli, Y. Liang and A. M. Sayeed. "Correlated MIMO Rayleigh Fading Channels: Capacity, Optimal Signaling, and Scaling Laws." Submitted to the *IEEE Transactions on Information Theory*, September 2003.

Preprint available at http://www.comm.csl.uiuc.edu/ ~vvv