Diversity and Outage Performance of Ricean MIMO Channels	Rohit U. Nabar Swiss Federal Institute of Technology (ETH) Zürich	Joint work with H. Bölcskei and A. J. Paulraj	Sissische Technische Hochschule Zürich (© Rohit U. Nabar. Communication Theory Group

2 Vg Eidgenöss Swiss Fedd

7 D

Systems
OWIW)
¥
br
Jt
ō
Ū
d
ti
n
S
ヒ
bu
L
ti
'n
Ś
S
es
el el
'ir
2

- Spatial multiplexing (Paulraj & Kailath, 1994) a.k.a. BLAST (Telatar, 1995, Foschini, 1996) increases spectral efficiency
- Space-time coding improves link reliability through diversity gain (Guey et al., 1996, Alamouti, 1998, Tarokh et al., 1998)

Motivation
 MIMO performance depends strongly on characteristics of matrix-valued channel H
 H depends on antenna heights and spacing, scattering richness, range, and antenna polarization
 MIMO performance analysis often assumes highly idealized i.i.d. Rayleigh fading channel
 In practice H may exhibit Ricean fading and/or spatial fading correlation
↓ How much diversity gain does a real-world MIMO channel offer?
ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich © Rohit U. Nabar, Communication Theory Group

- Line-of-sight (non-fading) path between transmitter and receiver
- Ricean K-factor defined as $K = P_{LOS}/P_{SCAT}$
- K depends strongly on **antenna heights** and **range**

C
$\mathbf{\cap}$
• • • •
-
σ
_
U
Ľ
5
U
U
b0
<u> </u>
•=
9
σ
ЦĽ
σ
•
Ļ
-
Ē
a
ра

- Depends on richness of scattering and antenna spacing
- Inappropriate antenna spacing or poor scattering results in spatial correlation

MIMO Channel Model
 Frequency-flat block fading channel
$ullet$ $M_R imes M_T$ channel matrix ${f H}$ is decomposed as
$\mathbf{H} = \overline{\mathbf{H}} + \widetilde{\mathbf{H}}$
 $\overline{H} = \mathcal{E}{H}$ is fixed (possibly line-of-sight) component \widetilde{H} is fading component (circularly symmetric complex Gaussian)
• Statistics of ${f H}$ fully characterized by $\overline{{f h}}={\sf vec}(\overline{{f H}})$ and
$\mathbf{R} = \mathcal{E} \left\{ \widetilde{\mathbf{h}} \widetilde{\mathbf{h}}^H ight\} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^H \qquad ext{with} \widetilde{\mathbf{h}} = ext{vec} \left(\widetilde{\mathbf{H}} ight)$
 Power normalization
$\mathcal{E}\{\ \mathbf{H}\ _F^2\} = \ \overline{\mathbf{H}}\ _F^2 + \mathcal{E}\{\ \widetilde{\mathbf{H}}\ _F^2\} = M_T M_R$
ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich © Rohit U. Nabar, Communication Theory Group

Quantifying Diversity Gain
 H perfectly known at receiver, no channel knowledge at transmitter
 Utilize all the degrees of freedom in the channel to realize diversity gain (at the expense of spatial rate)
 Ultimate diversity performance is characterized by
• Effective channel is scalar $\ \mathbf{H}\ _{F}^{2} = \sum_{i,j} [\mathbf{H}]_{i,j} ^{2}$
$y = \left\ \mathbf{H}\right\ _{F}^{2} x + n$
 This input-output relation is obtained with orthogonal space-time block codes (or with MRC in SIMO channels or RAKE receiver in frequency-selective fading SISO channels)
ETM Eidgenössische Technische Hochschule Zürich swiss Federal Institute of Technology Zurich © Rohit U. Nabar, Communication Theory Group 7

Prior Work	
 MRC-based div 1974, Simon & 	rersity characterization for wireless channels (Jakes, Alouini, 2000, Wang & Giannakis, 2003,)
 Impact of real- transmission (Georghiades, 2 	-world propagation conditions on space-time coded Fitz et al., 1999, Bölcskei & Paulraj, 2000, Uysal & 2001,)
Impact of the ge	ometry between fixed and fading channel components on diversity performance unexplored!
ETH Eigenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	© Rohit U. Nabar, Communication Theory Group

Mutual information given by

$$I = r_s \log_2 \left(1 + rac{
ho}{M_T} \| \mathbf{H} \|_F^2
ight) \; ext{bps/Hz}$$

- $\rho\ldots$ average SNR per receive antenna
- $r_s \dots$ spatial code rate
- Assume code word length is less than fading block length
- Performance characterized by distribution of random variable I

rder
ō
ersity
I Div
e and
Rat€
Error
acket
Δ

- Fixed transmission rate *R*
- Packet error rate (PER)
- packet is decoded correctly if $I \ge R$
- packet error (outage) declared if I < R
- Outage probability at rate R = PER at rate R
- Diversity order defined as high-SNR slope (magnitude) of PER (Zheng & Tse, 2003)

$$d(R) = -\lim_{\rho \to \infty} \frac{\log P(I \le R)}{\log \rho}$$

ETTA Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Packet Error Rate and Diversity Order Cont'd

ELTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

D
ž
g
Ū
\frown
\mathbf{O}
Š
S
Ð
Ž

Single-input single-output (SISO) channel with

$$h = \overline{h} + \widetilde{h}$$

and **K-factor**

$$K = \frac{|\overline{h}|^2}{\mathcal{E}\left\{|\widetilde{h}|^2\right\}}$$

For **arbitrary fixed** transmission rate R > 0

$$d(R) = \begin{cases} 1, & K < \infty \\ \infty, & K = \infty \end{cases}$$

• No matter how small $\mathcal{E}\left\{| ilde{h}|^2
ight\}$, there is always a non-zero probability that \widetilde{h} will annihilate \overline{h}

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich For fixed transmission rate R

$$d(R) = \begin{cases} \operatorname{rank}(\mathbf{R}), & \delta = 0\\ \infty, & \delta > 0 \end{cases}$$

$$\left\{\begin{array}{ll} = 0, & \angle(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R})) = 0\\ > 0, & 0 < \angle(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R})) \le \pi/2 \end{array}\right.$$

 $\mathcal{R}(\mathbf{R})$... range-space of \mathbf{R}

		$\mathbf{R})^{\dagger}\mathbf{R}^{H}\overline{\mathbf{h}}$	ined as	$\overline{\mathbf{h}} = 0,$ $\overline{\mathbf{h}} \neq 0 \text{ and } \mathbf{p}(\overline{\mathbf{h}}, \mathbf{R}) \neq 0$ $\overline{\mathbf{h}} \neq 0 \text{ and } \mathbf{p}(\overline{\mathbf{h}}, \mathbf{R}) = 0$	
$oldsymbol{\left(\overline{\mathbf{h}},\mathcal{R}(\mathbf{R}) ight)$ Defined	• Projection of $\overline{\mathbf{h}}$ onto $\mathcal{R}(\mathbf{R})$	$\mathbf{p}(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R})) = \mathbf{R}(\mathbf{R}^H \mathbf{F})$	$ullet$ Hermitian angle $\operatorname{between}\overline{\mathbf{h}}$ and $\mathcal{R}(\mathbf{R})$ def	$\angle(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R})) = \begin{cases} 0, \\ \cos^{-1}\left(\left \frac{\overline{\mathbf{h}}^{H} \mathbf{p}(\overline{\mathbf{h}}, \mathbf{R})}{\ \overline{\mathbf{h}}\ \ \mathbf{p}(\overline{\mathbf{h}}, \mathbf{R}) \ }\right \right), \\ \pi/2, \end{cases}$	ETH Idaenässische Hochschule Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich H

© Rohit U. Nabar, Communication Theory Group

4

© Rohit U. Nabar, Communication Theory Group

Ч

- Ricean MIMO channel is
- effectively Rayleigh fading with $\mathsf{rank}(\mathbf{R})$ degrees of freedom if $\measuredangle(\mathbf{h},\mathcal{R}(\mathbf{R}))=0$
- effectively AWGN if $\angle(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R})) \neq 0$
- Can we signal with zero outage over Ricean MIMO channels if $\angle(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R})) \neq 0$?

Rate	
ssion	
nsmi	
al Tra	
Critica	

 $\bullet~$ Packet error rate (outage probability) at transmission rate R satisfies

$$P(I \le R) \begin{cases} = 0, \quad R < R_{crit} \\ > 0, \quad R \ge R_{crit} \end{cases}$$

with

$$R_{crit} = r_s \log_2 \left(1 + \frac{\delta}{M_T} \rho \right)$$

- For $R \leq R_{crit}$, Ricean MIMO channel behaves like an AWGN channel (zero outage)
- R_{crit} is the **rate supported by** the **non-fading component** of the channel

Spatial Fauing Correlation – Good of EVIL?	
 Always detrimental in the case of pure Rayleigh fading 	
- Mild correlation (i.e., rank(\mathbf{R}) = N) results in coding gain loss (i.e., offset in PER vs. SNR curve)	
– Extreme correlation (i.e., rank(\mathbf{R}) < N) results in reduction of diversity order	
• Answer depends critically on $\measuredangle(\overline{\mathbf{h}}, \mathbf{R})$ in the case of Ricean fading	
- Mild correlation (i.e., rank(\mathbf{R}) = N) results in coding gain loss (relative geometry between $\overline{\mathbf{h}}$ and \mathbf{R} critical in determining loss!)	
– Extreme correlation (i.e., rank $({f R}) < N)$ can be highly beneficial	
ETH Eidgenössische Technische Hochschule Zürich swiss Federal Institute of Technology Zurich © Rohit U. Nabar, Communication Theory Group	18

- $M_T = 2, M_R = 1$
- Channel 1

$$\overline{\mathbf{H}} = \sqrt{\frac{K}{1+K}} \begin{bmatrix} 1 & 1 \end{bmatrix}, \qquad \widetilde{\mathbf{H}} = \sqrt{\frac{1}{1+K}} \begin{bmatrix} \widetilde{g}_{1,1} & \widetilde{g}_{1,2} \end{bmatrix}$$

Channel 2

$$\overline{\mathbf{H}} = \sqrt{\frac{K}{1+K}} \begin{bmatrix} 1 & -1 \end{bmatrix}, \qquad \widetilde{\mathbf{H}} = \sqrt{\frac{1}{1+K}} \begin{bmatrix} \widetilde{g}_{1,1} & \widetilde{g}_{1,2} \end{bmatrix}$$

Transmit correlation

$$t = \mathcal{E}\{\widetilde{g}_{1,1}\,\widetilde{g}_{1,2}^*\}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Numerical Example

R=2 bps/Hz

In the correlated case Channel 2 behaves like an AWGN channel

ELTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

© Rohit U. Nabar, Communication Theory Group

Numerical Example: Interpretation

НJ

Diversity Order I hrough S	Symbol Error Rate
uncoded symbol error rate	
 This definition yields 	
$d_E = \left\{ d_E = \left\{ d_E \right\} \right\}$	$\begin{cases} \operatorname{rank}(\mathbf{R}), & \delta = 0\\ \infty, & \delta > 0 \end{cases}$
(same δ as before)	
 Exhibits same behavior as di analysis 	iversity order defined through outage
ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	bar, Communication Theory Group

Comments on Wideband Spectral Efficiency
 Wideband spectral efficiency characterized by (Verdu, 2002)
– $\left(E_b/N_o ight)_{min}\dots$ minimum SNR-per-bit required to sustain error free communication
– ${\cal S}$ slope of spectral efficiency (in bps/Hz/3dB) at $(E_b/N_o)_{min}$
 For orthogonal space-time block codes in the wideband regime
$(E_b/N_o)_{min} = \ln 2/(r_s M_R)$
$S = 2r_s \left(\left(\frac{\text{Tr}(\mathbf{R}^2) + 2\overline{\mathbf{h}}^H \mathbf{R}\overline{\mathbf{h}}}{(M_T M_R)^2} \right) + 1 \right)^{-1}$
$\bullet \ {\cal S}$ impacted by the " peakiness " of the fading distribution which is turn depends on relative geometry between \overline{h} and R
ETH Eidenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich © Rohit U. Nabar, Communication Theory Group

© Rohit U. Nabar, Communication Theory Group

23

Conclusions
• Ultimate diversity performance in general MIMO channels characterized by $d = \begin{cases} \operatorname{rank}(\mathbf{R}), & \delta = 0\\ \infty, & \delta > 0 \end{cases}$
• Established the presence of a critical transmission rate R_{crit} below which the Ricean MIMO channel behaves like an AWGN channel
$\bullet \ R_{crit}$ is zero for SISO channels and for purely Rayleigh fading MIMO channels
• R_{crit} depends on $\measuredangle(\overline{\mathbf{h}}, \mathcal{R}(\mathbf{R}))$
 The notion of diversity order should be "handled with care"
ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich (C) Rohit U. Nabar, Communication Theory Group